Difference between revisions of "Aufgaben:Exercise 1.7Z: BARBARA Generator"

From LNTwww
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Markovketten}}
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Markov_Chains}}
  
[[File:P_ID454__Sto_Z_1_7.png|right|frame|$BARBARA$-Generator]]
+
[[File:P_ID454__Sto_Z_1_7.png|right|frame|$BARBARA$ Generator]]
Betrachtet wird hier ein ternärer Zufallsgenerator mit den Symbolen  $A$,  $B$  und  $R$, der durch eine homogene und stationäre Markovkette erster Ordnung beschrieben werden kann.
+
Here we consider a ternary random generator with symbols  $A$,  $B$  and  $R$, which can be described by a homogeneous and stationary first order Markov chain.
  
*Die Übergangswahrscheinlichkeiten können dem skizzierten Markovdiagramm entnommen werden.  
+
*The transition probabilities can be taken from the sketched Markov diagram.
*Für die ersten drei Teilaufgaben soll stets  $p = 1/4$  gelten.
+
*For the first three subtasks,  $p = 1/4$  should always hold.
  
  
Line 13: Line 13:
  
  
''Hinweis:''
+
Hints:
*Die Aufgabe gehört zum  Kapitel  [[Theory_of_Stochastic_Signals/Markovketten|Markovketten]].
+
*The task belongs to the chapter  [[Theory_of_Stochastic_Signals/Markov_Chains|Markov Chains]].
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der nachfolgenden Aussagen sind zutreffend?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
- Die Werte von&nbsp; $p > 0$&nbsp; und&nbsp; $q < 1$&nbsp; sind weitgehend frei wählbar.
+
- The values of&nbsp; $p > 0$&nbsp; and&nbsp; $q < 1$&nbsp; are largely arbitrary.
+ Für die Übergangswahrscheinlichkeiten muss gelten: &nbsp; $p + q = 1$.
+
+ For the transition probabilities, the following must hold: &nbsp; $p + q = 1$.
+ Alle Symbole haben gleiche ergodische Wahrscheinlichkeiten.
+
+ All symbols have equal ergodic probabilities.
- Es gilt hier:&nbsp; ${\rm Pr}(A) = 1/2, \; {\rm Pr}(B) = 1/3, \; {\rm Pr}(R) = 1/6$.
+
- It holds here:&nbsp; ${\rm Pr}(A) = 1/2, \; {\rm Pr}(B) = 1/3, \; {\rm Pr}(R) = 1/6$.
  
{Wie groß sind die bedingten Wahrscheinlichkeiten&nbsp; $p_{\rm A}$,&nbsp; $p_{\rm B}$&nbsp; und&nbsp; $p_{\rm C}$, dass zu den Zeiten zwischen&nbsp; $ν+1$&nbsp; und&nbsp; $ν+7$&nbsp; die Sequenz&nbsp; $BARBARA$&nbsp; ausgegeben wird, <br>wenn man sich zum Zeitpunkt&nbsp; $ν$&nbsp; im Zustand&nbsp; $A$,&nbsp; $B$&nbsp; bzw.&nbsp; $R$&nbsp; befindet?&nbsp; Es gelte&nbsp; $p = 1/4$.
+
{What are the conditional probabilities&nbsp; $p_{\rm A}$,&nbsp; $p_{\rm B}$&nbsp; and&nbsp; $p_{\rm C}$ that at times between&nbsp; $ν+1$&nbsp; and&nbsp; $ν+7$&nbsp; the sequence&nbsp; $BARBARA$&nbsp; is output, <br>if one is in state im Zustand&nbsp; $A$,&nbsp; $B$&nbsp; or&nbsp; $R$&nbsp;, respectively,at time&nbsp; $ν$&nbsp;?&nbsp; Let&nbsp; $p = 1/4$.
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm A} \ = \ $  { 0.549 3% } $\ \cdot 10^{-3}$  
 
$p_{\rm A} \ = \ $  { 0.549 3% } $\ \cdot 10^{-3}$  
Line 34: Line 34:
 
$p_{\rm C} \ = \ $ { 0.183 3% } $\ \cdot 10^{-3}$  
 
$p_{\rm C} \ = \ $ { 0.183 3% } $\ \cdot 10^{-3}$  
  
{Wie groß ist die Wahrscheinlichkeit insgesamt, dass der Generator zu sieben aufeinanderfolgenden Zeitpunkten die Sequenz&nbsp; $BARBARA$&nbsp; ausgibt?<br>  Es gelte weiter&nbsp; $p = 1/4.$
+
{What is the overall probability that the generator outputs the sequence&nbsp; $BARBARA$&nbsp; ausgibt?<br>  Let&nbsp; $p = 1/4$ continue to hold.
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(BARBARA)\ = \ $ { 0.244 3% } $\ \cdot 10^{-3}$
 
${\rm Pr}(BARBARA)\ = \ $ { 0.244 3% } $\ \cdot 10^{-3}$
  
{Wie ist der Parameter&nbsp; $p_{\rm opt}$&nbsp; zu wählen, damit&nbsp; ${\rm Pr}(BARBARA)$&nbsp; möglichst groß wird?  <br>Welche Wahrscheinlichkeit ergibt sich damit für&nbsp; $BARBARA$?
+
{How should the parameter&nbsp; $p_{\rm opt}$&nbsp; be chosen to make&nbsp; ${\rm Pr}(BARBARA)$&nbsp; as large as possible?  <br>What is the resulting probability for&nbsp; $BARBARA$?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm opt} \ = \ $  { 0.8333 3% }
 
$p_{\rm opt} \ = \ $  { 0.8333 3% }
Line 47: Line 47:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind <u>der zweite und der dritte Lösungsvorschlag</u>:
+
'''(1)'''&nbsp; Correct are <u>the second and third suggested solutions</u>:
*Die Summe aller abgehenden Pfeile muss immer&nbsp; $1$&nbsp; sein. Deshalb gilt&nbsp; $q = 1 - p$.  
+
*The sum of all outgoing arrows must always be&nbsp; $1$&nbsp;. Therefore&nbsp; $q = 1 - p$ holds.  
*Aufgrund der Symmetrie des Markovdiagramms sind die ergodischen Wahrscheinlichkeiten alle gleich:
+
*Because of the symmetry of the Markov diagram, the ergodic probabilities are all equal:
 
:$${\rm Pr}(A) ={\rm Pr}(B) ={\rm Pr}(R) = 1/3.$$
 
:$${\rm Pr}(A) ={\rm Pr}(B) ={\rm Pr}(R) = 1/3.$$
  
  
 +
'''(2)'''&nbsp; If one is in the state&nbsp; $B$&nbsp; at the starting time&nbsp; $\nu=1$&nbsp; because of&nbsp; ${\rm Pr}(B\hspace{0.05cm}|\hspace{0.05cm}B) = 0$ the state&nbsp; $B$&nbsp; is not possible.
  
'''(2)'''&nbsp; Wenn man zum Startzeitpunkt&nbsp; $\nu = 0$&nbsp; im Zustand&nbsp; $B$&nbsp; ist, ist für den Zeitpunkt&nbsp; $\nu=1$&nbsp; wegen&nbsp; ${\rm Pr}(B\hspace{0.05cm}|\hspace{0.05cm}B) = 0$ der Zustand&nbsp; $B$&nbsp; nicht möglich.
+
 
*Man scheitert hier bereits beim Anfangsbuchstaben $B$:  
+
*One fails here already with the initial letter $B$:  
 
:$$p_{\rm B} \; \underline{ =0}.$$
 
:$$p_{\rm B} \; \underline{ =0}.$$
  
*F&uuml;r die Berechnung von&nbsp; $p_{\rm A}$&nbsp; ist zu beachten: &nbsp; Ausgehend von&nbsp; $A$&nbsp; geht man im Markovdiagramm zun&auml;chst zu&nbsp; $B$&nbsp; $($mit der Wahrscheinlichkeit $q)$, dann f&uuml;nfmal im Uhrzeigersinn&nbsp; $($jeweils mit der Wahrscheinlichkeit $p)$&nbsp; und schlie&szlig;lich noch von&nbsp; $R$&nbsp; nach&nbsp; $A$&nbsp; $($mit der Wahrscheinlichkeit&nbsp; $q)$.&nbsp; Das bedeutet:
+
*For the calculation of&nbsp; $p_{\rm A}$&nbsp; it should be noted: &nbsp; Starting from&nbsp; $A$&nbsp; one goes in the Markov diagram first to&nbsp; $B$&nbsp; $($with probability $q)$, then five times clockwise&nbsp; $($each time with probability $p)$&nbsp; and finally from&nbsp; $R$&nbsp; to&nbsp; $A$&nbsp; $($with probability&nbsp; $q)$. &nbsp; Meaning:
:$$p_{\rm A} = q^2 \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 = 3^2 / 4^7 \hspace{0.15cm}\underline {\approx 0.549 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$
+
:$$p_{\rm A} = q^2 \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 = 3^2 / 4^7 \hspace{0.15cm}\underline {\approx 0.549 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$
*In &auml;hnlicher Weise erh&auml;lt man:
+
*In a similar way, one obtains:
:$$p_{\rm R} = q \hspace{0.05cm}\cdot \hspace{0.05cm} p^6 = 3 / 4^7 \hspace{0.15cm}\underline {\approx 0.183 \hspace{0.05cm}\cdot  \hspace{0.05cm} 10^{-3}}.$$
+
:$$p_{\rm R} = q \hspace{0.05cm}\cdot \hspace{0.05cm} p^6 = 3 / 4^7 \hspace{0.15cm}\underline {\approx 0.183 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$
 +
 
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; By averaging over the conditional probabilities we obtain:
 +
:$${\rm Pr}(BARBARA) = p_{\rm A} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm B}  \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(B) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm R}  \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(R).$$
 +
This leads to the result:
 +
:$${\rm Pr}(BARBARA) = {1}/{3} \cdot \left( q^2 \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 \hspace{0.1cm} +\hspace{0.1cm}0 \hspace{0.1cm} +\hspace{0.1cm}q \hspace{0.05cm}\cdot \hspace{0.05cm} p^6 \right)
 +
= \frac{q \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 }{3} \cdot{p+q}
 +
= \hspace{-0.15cm} \frac{q \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 }{3}
 +
\hspace{0.15cm}\underline { \approx 0.244 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$
  
  
  
'''(3)'''&nbsp; Durch Mittelung &uuml;ber die bedingten Wahrscheinlichkeiten erh&auml;lt man:
+
'''(4)'''&nbsp; The probability calculated in&nbsp; '''(3)'''&nbsp; is&nbsp; $p^5 \cdot (1-p)/3$, where&nbsp; $q= 1-p$&nbsp; is considered.  
:$${\rm Pr}(BARBARA) = p_{\rm A}  \hspace{0.05cm}\cdot  \hspace{0.05cm} {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm B}  \hspace{0.05cm}\cdot  \hspace{0.05cm} {\rm Pr}(B) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm R}  \hspace{0.05cm}\cdot  \hspace{0.05cm} {\rm Pr}(R).$$
 
Dies f&uuml;hrt zum Ergebnis:
 
:$${\rm Pr}(BARBARA) =  {1}/{3} \cdot \left( q^2 \hspace{0.05cm}\cdot  \hspace{0.05cm} p^5 \hspace{0.1cm} +\hspace{0.1cm}0  \hspace{0.1cm} +\hspace{0.1cm}q \hspace{0.05cm}\cdot \hspace{0.05cm} p^6  \right)  
 
= \frac{q \hspace{0.05cm}\cdot  \hspace{0.05cm} p^5 }{3} \cdot (p+q)
 
= \hspace{-0.15cm} \frac{q \hspace{0.05cm}\cdot  \hspace{0.05cm} p^5 }{3}
 
\hspace{0.15cm}\underline { \approx 0.244  \hspace{0.05cm}\cdot  \hspace{0.05cm} 10^{-3}}.$$
 
  
 +
*By setting the differential to zero, we obtain the governing equation:
 +
:$$5 \cdot p^4 - 6 \cdot p^5 = 0 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} p_{\rm opt} = 5/6 \hspace{0.15cm}\underline { \approx \rm 0.833}.$$
 +
*This results in a value that is larger than the subtask&nbsp; '''(3)'''&nbsp; by a factor&nbsp; $90$&nbsp; approximately:
 +
:$${\rm Pr}(BARBARA) \hspace{0.15cm}\underline { \approx 22 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$
  
'''(4)'''&nbsp; Die im Punkt&nbsp; '''(3)'''&nbsp; berechnete Wahrscheinlichkeit lautet&nbsp; $p^5 \cdot (1-p)/3$, wobei&nbsp; $q= 1-p$&nbsp; berücksichtigt ist.
 
  
*Durch Nullsetzen des Differentials erh&auml;lt man die Bestimmungsgleichung:
 
:$$5 \cdot p^4 - 6 \cdot p^5 = 0 \hspace{0.5cm} \Rightarrow  \hspace{0.5cm}  p_{\rm opt} = 5/6 \hspace{0.15cm}\underline { \approx \rm 0.833}.$$
 
*Damit ergibt sich ein gegen&uuml;ber der Teilaufgabe&nbsp; '''(3)'''&nbsp; etwa um den Faktor&nbsp; $90$&nbsp; gr&ouml;&szlig;erer Wert:
 
:$${\rm Pr}(BARBARA)  \hspace{0.15cm}\underline { \approx 22  \hspace{0.05cm}\cdot  \hspace{0.05cm} 10^{-3}}.$$
 
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 16:32, 29 November 2021

$BARBARA$ Generator

Here we consider a ternary random generator with symbols  $A$,  $B$  and  $R$, which can be described by a homogeneous and stationary first order Markov chain.

  • The transition probabilities can be taken from the sketched Markov diagram.
  • For the first three subtasks,  $p = 1/4$  should always hold.




Hints:


Questions

1

Which of the following statements are true?

The values of  $p > 0$  and  $q < 1$  are largely arbitrary.
For the transition probabilities, the following must hold:   $p + q = 1$.
All symbols have equal ergodic probabilities.
It holds here:  ${\rm Pr}(A) = 1/2, \; {\rm Pr}(B) = 1/3, \; {\rm Pr}(R) = 1/6$.

2

What are the conditional probabilities  $p_{\rm A}$,  $p_{\rm B}$  and  $p_{\rm C}$ that at times between  $ν+1$  and  $ν+7$  the sequence  $BARBARA$  is output,
if one is in state im Zustand  $A$,  $B$  or  $R$ , respectively,at time  $ν$ ?  Let  $p = 1/4$.

$p_{\rm A} \ = \ $

$\ \cdot 10^{-3}$
$p_{\rm B} \ = \ $

$\ \cdot 10^{-3}$
$p_{\rm C} \ = \ $

$\ \cdot 10^{-3}$

3

What is the overall probability that the generator outputs the sequence  $BARBARA$  ausgibt?
Let  $p = 1/4$ continue to hold.

${\rm Pr}(BARBARA)\ = \ $

$\ \cdot 10^{-3}$

4

How should the parameter  $p_{\rm opt}$  be chosen to make  ${\rm Pr}(BARBARA)$  as large as possible?
What is the resulting probability for  $BARBARA$?

$p_{\rm opt} \ = \ $

$p = p_{\rm opt}\hspace{-0.1cm}: \hspace{0.3cm}{\rm Pr}(BARBARA)\ = \ $

$\ \cdot 10^{-3}$


Musterlösung

(1)  Correct are the second and third suggested solutions:

  • The sum of all outgoing arrows must always be  $1$ . Therefore  $q = 1 - p$ holds.
  • Because of the symmetry of the Markov diagram, the ergodic probabilities are all equal:
$${\rm Pr}(A) ={\rm Pr}(B) ={\rm Pr}(R) = 1/3.$$


(2)  If one is in the state  $B$  at the starting time  $\nu=1$  because of  ${\rm Pr}(B\hspace{0.05cm}|\hspace{0.05cm}B) = 0$ the state  $B$  is not possible.


  • One fails here already with the initial letter $B$:
$$p_{\rm B} \; \underline{ =0}.$$
  • For the calculation of  $p_{\rm A}$  it should be noted:   Starting from  $A$  one goes in the Markov diagram first to  $B$  $($with probability $q)$, then five times clockwise  $($each time with probability $p)$  and finally from  $R$  to  $A$  $($with probability  $q)$.   Meaning:
$$p_{\rm A} = q^2 \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 = 3^2 / 4^7 \hspace{0.15cm}\underline {\approx 0.549 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$
  • In a similar way, one obtains:
$$p_{\rm R} = q \hspace{0.05cm}\cdot \hspace{0.05cm} p^6 = 3 / 4^7 \hspace{0.15cm}\underline {\approx 0.183 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$



(3)  By averaging over the conditional probabilities we obtain:

$${\rm Pr}(BARBARA) = p_{\rm A} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm B} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(B) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm R} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(R).$$

This leads to the result:

$${\rm Pr}(BARBARA) = {1}/{3} \cdot \left( q^2 \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 \hspace{0.1cm} +\hspace{0.1cm}0 \hspace{0.1cm} +\hspace{0.1cm}q \hspace{0.05cm}\cdot \hspace{0.05cm} p^6 \right) = \frac{q \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 }{3} \cdot{p+q} = \hspace{-0.15cm} \frac{q \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 }{3} \hspace{0.15cm}\underline { \approx 0.244 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$


(4)  The probability calculated in  (3)  is  $p^5 \cdot (1-p)/3$, where  $q= 1-p$  is considered.

  • By setting the differential to zero, we obtain the governing equation:
$$5 \cdot p^4 - 6 \cdot p^5 = 0 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} p_{\rm opt} = 5/6 \hspace{0.15cm}\underline { \approx \rm 0.833}.$$
  • This results in a value that is larger than the subtask  (3)  by a factor  $90$  approximately:
$${\rm Pr}(BARBARA) \hspace{0.15cm}\underline { \approx 22 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$