Difference between revisions of "Aufgaben:Exercise 1.7Z: Overall Systems Analysis"

From LNTwww
Line 15: Line 15:
 
Das Eingangssignal $w(t)$ des Gesamtsystems sei ein Gaußimpuls mit Amplitude $5 \ \rm V = const. $ und variabler Breite $T$:
 
Das Eingangssignal $w(t)$ des Gesamtsystems sei ein Gaußimpuls mit Amplitude $5 \ \rm V = const. $ und variabler Breite $T$:
 
$$w(t) = {5\,\rm V}\cdot {\rm e}^{-\pi(t/T)^2}.$$
 
$$w(t) = {5\,\rm V}\cdot {\rm e}^{-\pi(t/T)^2}.$$
Zu untersuchen ist, in welchem Bereich die äquivalente Impulsdauer $T$ dieses Gaußimpulses variieren kann, damit das Gesamtsystem durch den Frequenzband
+
Zu untersuchen ist, in welchem Bereich die äquivalente Impulsdauer $T$ dieses Gaußimpulses variieren kann, damit das Gesamtsystem durch den Frequenzgang
 
$$H_{\rm G}(f) = K \cdot {\rm e}^{-\pi(f/\Delta f_{\rm G})^2}$$
 
$$H_{\rm G}(f) = K \cdot {\rm e}^{-\pi(f/\Delta f_{\rm G})^2}$$
 
vollständig beschrieben wird. Der Index „G” bei Frequenzgang und Bandbreite bezieht sich jeweils auf „Gesamtsystem”.
 
vollständig beschrieben wird. Der Index „G” bei Frequenzgang und Bandbreite bezieht sich jeweils auf „Gesamtsystem”.
Line 43: Line 43:
 
{Geben Sie die Parameter des Gesamtfrequenzgangs $H_{\rm G}(f)$ an.
 
{Geben Sie die Parameter des Gesamtfrequenzgangs $H_{\rm G}(f)$ an.
 
|type="{}"}
 
|type="{}"}
$K \=$ { 2 3% }
+
$K \ =$ { 2 3% }
 
$\Delta f_{\rm G} =$ { 2 3% } $\ \rm  kHz$
 
$\Delta f_{\rm G} =$ { 2 3% } $\ \rm  kHz$
  
Line 50: Line 50:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:'''a)''' Die erste Aussage ist zutreffend: Nur für ein lineares System kann ein Frequenzgang angegeben werden. Damit dies hier möglich ist, darf die Nichtlinearität keine Rolle spielen. Das heißt, es muss sicher gestellt sein, dass $|x(t)|$ nicht größer als 4 V ist.
+
'''(1)'''  Die erste Aussage ist zutreffend: Nur für ein lineares System kann ein Frequenzgang angegeben werden. Damit dies hier möglich ist, darf die Nichtlinearität keine Rolle spielen. Das heißt, es muss sicher gestellt sein, dass $|x(t)|$ nicht größer als $4 \ \rm V$ ist.
  
:Dagegen ist die zweite Aussage nicht zutreffend. Die Bandbreite von $H_3(f)$ hat keinen Einfluss darauf, ob die Nichtlinearität elimimiert werden kann oder nicht. Richtig sind also die $\ \rm \underline{Antworten \ 1 \ und \ 3}$.
+
Dagegen ist die zweite Aussage nicht zutreffend. Die Bandbreite von $H_3(f)$ hat keinen Einfluss darauf, ob die Nichtlinearität elimimiert werden kann oder nicht. Richtig sind also die <u>Antworten1 und 3</u>.
  
  
:'''b)''' Der erste Gaußtiefpass wird im Frequenzbereich wie folgt beschrieben:
+
'''(2)'''&nbsp; Der erste Gaußtiefpass wird im Frequenzbereich wie folgt beschrieben:
 
$$\begin{align*}X(f) & =  W(f) \cdot H_1(f) = {5\,\rm V}\cdot T \cdot {\rm e}^{-\pi(f \cdot T)^2} \cdot {\rm e}^{-\pi(f/\Delta f_1)^2}\\ & =  {5\,\rm V}\cdot T \cdot {\rm e}^{-\pi f^2 (T^2 + \Delta t_1^2)}= {5\,\rm V}\cdot T \cdot {\rm e}^{-\pi(f/\Delta f_x)^2}.\end{align*}$$
 
$$\begin{align*}X(f) & =  W(f) \cdot H_1(f) = {5\,\rm V}\cdot T \cdot {\rm e}^{-\pi(f \cdot T)^2} \cdot {\rm e}^{-\pi(f/\Delta f_1)^2}\\ & =  {5\,\rm V}\cdot T \cdot {\rm e}^{-\pi f^2 (T^2 + \Delta t_1^2)}= {5\,\rm V}\cdot T \cdot {\rm e}^{-\pi(f/\Delta f_x)^2}.\end{align*}$$
:Hierbei bezeichnet $Δf_x$ die äquivalente Bandbreite von $X(f)$. Der Signalwert bei $t =$ 0 – gleichzeitig der Maximalwert des Signals – ist gleich der Spektralfläche; dieser soll nicht größer werden als 4 V:
+
:Hierbei bezeichnet $Δf_x$ die äquivalente Bandbreite von $X(f)$. Der Signalwert bei $t = 0$ – gleichzeitig der Maximalwert des Signals – ist gleich der Spektralfläche; dieser soll nicht größer werden als $4 \ \rm V$:
 
$$x_{\rm max} = x(t =0) = {5\,\rm V}\cdot T \cdot \Delta f_x \le {4\,\rm V}.$$
 
$$x_{\rm max} = x(t =0) = {5\,\rm V}\cdot T \cdot \Delta f_x \le {4\,\rm V}.$$
:Daraus folgt durch Koeffizientenvergleich:
+
Daraus folgt durch Koeffizientenvergleich:
 
$$\begin{align*}\frac{1}{T \cdot \Delta f_x} > \frac{5}{4}\hspace{0.1cm} & \Rightarrow  \hspace{0.1cm} \frac{1}{T^2 \cdot \Delta f_x^2} > \frac{25}{16}\hspace{0.3cm}
 
$$\begin{align*}\frac{1}{T \cdot \Delta f_x} > \frac{5}{4}\hspace{0.1cm} & \Rightarrow  \hspace{0.1cm} \frac{1}{T^2 \cdot \Delta f_x^2} > \frac{25}{16}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}\frac{T^2 + \Delta t_1^2}{T^2} > \frac{25}{16}\\
 
\Rightarrow \hspace{0.3cm}\frac{T^2 + \Delta t_1^2}{T^2} > \frac{25}{16}\\
Line 66: Line 66:
 
\Delta t_1^2} \le \frac{16}{9}\hspace{0.3cm}\Rightarrow
 
\Delta t_1^2} \le \frac{16}{9}\hspace{0.3cm}\Rightarrow
 
\hspace{0.3cm} T \le \frac{4}{3} \cdot \Delta t_1 \hspace{0.15cm}\underline{= {0.4\,\rm ms}}.\end{align*}$$
 
\hspace{0.3cm} T \le \frac{4}{3} \cdot \Delta t_1 \hspace{0.15cm}\underline{= {0.4\,\rm ms}}.\end{align*}$$
:Die Kontrollrechnung ergibt:
+
Die Kontrollrechnung ergibt:
$$\Delta t_x = \sqrt{T^2 + \Delta t_1^2} = \sqrt{({0.4\,\rm ms})^2 + ({0.3\,\rm ms})^2} = {0.5\,\rm ms} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\Delta f_x = \frac{1}{\Delta t_x}= {2\,\rm kHz}\\$$
+
$$\Delta t_x = \sqrt{T^2 + \Delta t_1^2} = \sqrt{({0.4\,\rm ms})^2 + ({0.3\,\rm ms})^2} = {0.5\,\rm ms} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\Delta f_x = {1}/{\Delta t_x}= {2\,\rm kHz}\\$$
 
$$\Rightarrow \hspace{0.3cm} x(t=0) = {5\,\rm V}\cdot T \cdot \Delta f_x = {5\,\rm V}\cdot {0.4\,\rm ms} \cdot  {2\,\rm kHz} = {4\,\rm V}.$$
 
$$\Rightarrow \hspace{0.3cm} x(t=0) = {5\,\rm V}\cdot T \cdot \Delta f_x = {5\,\rm V}\cdot {0.4\,\rm ms} \cdot  {2\,\rm kHz} = {4\,\rm V}.$$
  
  
:'''c)''' Die Gaußtiefpässe erfüllen die Bedingung $H_1(f = 0) = H_3(f = 0) = 1$. Unter Berücksichtigung der Verstärkung des zweiten Blocks im linearen Bereich erhält man somit für die Gesamtverstärkung:
+
'''(3)'''&nbsp; Die Gaußtiefpässe erfüllen die Bedingung $H_1(f = 0) = H_3(f = 0) = 1$. Unter Berücksichtigung der Verstärkung des zweiten Blocks im linearen Bereich erhält man somit für die Gesamtverstärkung: &nbsp; $\underline{K \ = \ 2}$.
$$\underline{K \ = \ 2}$$
+
 
:Für die äquivalente Impulsdauer des Gesamtsystems gilt:
+
Für die äquivalente Impulsdauer des Gesamtsystems gilt:
 
$$\Delta t_{\rm G} = \sqrt{\Delta t_1^2 + \frac{1}{\Delta f_3^2}} = \sqrt{({0.3\,\rm ms})^2 + \left( \frac{1}{{2.5\,\rm
 
$$\Delta t_{\rm G} = \sqrt{\Delta t_1^2 + \frac{1}{\Delta f_3^2}} = \sqrt{({0.3\,\rm ms})^2 + \left( \frac{1}{{2.5\,\rm
  kHz}}\right)^2}={0.5\,\rm ms}$$
+
  kHz}}\right)^2}={0.5\,\rm ms} \; \; \Rightarrow \; \;  \Delta f_{\rm G} = {1}/{\Delta t_{\rm G}} \hspace{0.15cm}\underline{= {2\,\rm kHz}}.$$
$$\Rightarrow \Delta f_{\rm G} = \frac{1}{\Delta t_{\rm G}} \hspace{0.15cm}\underline{= {2\,\rm kHz}}.$$
 
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 12:23, 30 January 2017

System mit Gaußtiefpässen und nichtlinearer Kennlinie

Ein Gesamtsystem $G$ mit Eingang $w(t)$ und Ausgang $z(t)$ besteht aus drei Komponenten:

  • Die erste Komponente ist ein Gaußtiefpass mit der Impulsantwort
$$h_1(t) = \frac{1}{\Delta t_1} \cdot {\rm e}^{-\pi(t/\Delta t_1)^2}, \hspace{0.5cm} \Delta t_1= {0.3\,\rm ms}.$$
  • Danach folgt eine Nichtlinearität mit der Kennlinie
$$y(t) = \left\{ \begin{array}{c} {8\,\rm V} \\ 2 \cdot x(t) \\ {-8\,\rm V} \\ \end{array} \right.\quad \quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {x(t) \ge {4\,\rm V}}, \\ {{-4\,\rm V} < x(t) < {4\,\rm V}}, \\ {x(t)\le {-4\,\rm V}}. \\ \end{array}$$
⇒  Das Eingangssignal $x(t)$ der Nichtlinearität wird um den Faktor $2$ verstärkt und – falls nötig – auf den Amplitudenbereich $±8 \ \rm V$ begrenzt.
  • Am Ende der Kette folgt wieder ein Gaußtiefpass, der durch seinen Frequenzgang gegeben ist:
$$H_3(f) = {\rm e}^{-\pi(f/\Delta f_3)^2}, \hspace{0.5cm} \Delta f_3= {2.5\,\rm kHz}.$$


Das Eingangssignal $w(t)$ des Gesamtsystems sei ein Gaußimpuls mit Amplitude $5 \ \rm V = const. $ und variabler Breite $T$: $$w(t) = {5\,\rm V}\cdot {\rm e}^{-\pi(t/T)^2}.$$ Zu untersuchen ist, in welchem Bereich die äquivalente Impulsdauer $T$ dieses Gaußimpulses variieren kann, damit das Gesamtsystem durch den Frequenzgang $$H_{\rm G}(f) = K \cdot {\rm e}^{-\pi(f/\Delta f_{\rm G})^2}$$ vollständig beschrieben wird. Der Index „G” bei Frequenzgang und Bandbreite bezieht sich jeweils auf „Gesamtsystem”.


Hinweise:

  • Die Aufgabe gehört bezieht sich auf die Seite Gaußtiefpass .
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.


Fragebogen

1

Welche Bedingungen müssen erfüllt sein, damit das Gesamtsystem durch einen einzigen Frequenzgang beschreibbar ist?

Es besteht ein linearer Zusammenhang zwischen $w(t)$ und $z(t)$.
$H_3(f)$ muss schmalbandiger sein als $H_1(f)$.
Das Signal $x(t)$ darf betragsmäßig nicht größer sein als $4 \ \rm V$.

2

Berechnen Sie den Maximalwert für die äquivalente Impulsdauer $T$, damit die unter (1) genannten Bedingungen erfüllbar sind.

$T_{\rm max} \ =$

$\ \rm ms$

3

Geben Sie die Parameter des Gesamtfrequenzgangs $H_{\rm G}(f)$ an.

$K \ =$

$\Delta f_{\rm G} =$

$\ \rm kHz$


Musterlösung

(1)  Die erste Aussage ist zutreffend: Nur für ein lineares System kann ein Frequenzgang angegeben werden. Damit dies hier möglich ist, darf die Nichtlinearität keine Rolle spielen. Das heißt, es muss sicher gestellt sein, dass $|x(t)|$ nicht größer als $4 \ \rm V$ ist.

Dagegen ist die zweite Aussage nicht zutreffend. Die Bandbreite von $H_3(f)$ hat keinen Einfluss darauf, ob die Nichtlinearität elimimiert werden kann oder nicht. Richtig sind also die Antworten1 und 3.


(2)  Der erste Gaußtiefpass wird im Frequenzbereich wie folgt beschrieben: $$\begin{align*}X(f) & = W(f) \cdot H_1(f) = {5\,\rm V}\cdot T \cdot {\rm e}^{-\pi(f \cdot T)^2} \cdot {\rm e}^{-\pi(f/\Delta f_1)^2}\\ & = {5\,\rm V}\cdot T \cdot {\rm e}^{-\pi f^2 (T^2 + \Delta t_1^2)}= {5\,\rm V}\cdot T \cdot {\rm e}^{-\pi(f/\Delta f_x)^2}.\end{align*}$$

Hierbei bezeichnet $Δf_x$ die äquivalente Bandbreite von $X(f)$. Der Signalwert bei $t = 0$ – gleichzeitig der Maximalwert des Signals – ist gleich der Spektralfläche; dieser soll nicht größer werden als $4 \ \rm V$:

$$x_{\rm max} = x(t =0) = {5\,\rm V}\cdot T \cdot \Delta f_x \le {4\,\rm V}.$$ Daraus folgt durch Koeffizientenvergleich: $$\begin{align*}\frac{1}{T \cdot \Delta f_x} > \frac{5}{4}\hspace{0.1cm} & \Rightarrow \hspace{0.1cm} \frac{1}{T^2 \cdot \Delta f_x^2} > \frac{25}{16}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\frac{T^2 + \Delta t_1^2}{T^2} > \frac{25}{16}\\ & \Rightarrow \hspace{0.1cm}\frac{ \Delta t_1^2}{T^2} > \frac{9}{16}\hspace{0.3cm}\Rightarrow \hspace{0.5cm}\frac{T^2}{ \Delta t_1^2} \le \frac{16}{9}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} T \le \frac{4}{3} \cdot \Delta t_1 \hspace{0.15cm}\underline{= {0.4\,\rm ms}}.\end{align*}$$ Die Kontrollrechnung ergibt: $$\Delta t_x = \sqrt{T^2 + \Delta t_1^2} = \sqrt{({0.4\,\rm ms})^2 + ({0.3\,\rm ms})^2} = {0.5\,\rm ms} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\Delta f_x = {1}/{\Delta t_x}= {2\,\rm kHz}\\$$ $$\Rightarrow \hspace{0.3cm} x(t=0) = {5\,\rm V}\cdot T \cdot \Delta f_x = {5\,\rm V}\cdot {0.4\,\rm ms} \cdot {2\,\rm kHz} = {4\,\rm V}.$$


(3)  Die Gaußtiefpässe erfüllen die Bedingung $H_1(f = 0) = H_3(f = 0) = 1$. Unter Berücksichtigung der Verstärkung des zweiten Blocks im linearen Bereich erhält man somit für die Gesamtverstärkung:   $\underline{K \ = \ 2}$.

Für die äquivalente Impulsdauer des Gesamtsystems gilt: $$\Delta t_{\rm G} = \sqrt{\Delta t_1^2 + \frac{1}{\Delta f_3^2}} = \sqrt{({0.3\,\rm ms})^2 + \left( \frac{1}{{2.5\,\rm kHz}}\right)^2}={0.5\,\rm ms} \; \; \Rightarrow \; \; \Delta f_{\rm G} = {1}/{\Delta t_{\rm G}} \hspace{0.15cm}\underline{= {2\,\rm kHz}}.$$