Difference between revisions of "Aufgaben:Exercise 2.08Z: Addition and Multiplication in GF(2 power 3)"

From LNTwww
(Die Seite wurde neu angelegt: „{{quiz-Header|Buchseite=Kanalcodierung/Definition und Eigenschaften von Reed–Solomon–Codes }} [[File:|right|]] ===Fragebogen=== <quiz display=simpl…“)
 
 
(27 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Definition und Eigenschaften von Reed–Solomon–Codes
+
{{quiz-Header|Buchseite=Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes}}
  
 +
[[File:P_ID2536__KC_Z_2_8.png|right|frame|$\rm GF(2^3)$:&nbsp; Incomplete addition and multiplication tables]]
 +
The graph shows the addition and multiplication table for the finite field&nbsp; $\rm GF(2^3)$.&nbsp; The tables are not complete.&nbsp; Some fields&nbsp; $($highlighted in color$)$&nbsp; should be completed.
  
 +
The elements are given both
 +
*in the exponent representation&nbsp; $($with red lettering,&nbsp; left and above$)$ and
  
}}
+
*in the coefficient representation&nbsp; (gray lettering,&nbsp; right and below).&nbsp;
  
[[File:|right|]]
 
  
 +
From this assignment one can already recognize the underlying irreducible polynomial&nbsp; $p(\alpha)$.
  
===Fragebogen===
+
*Additions&nbsp; $($and subtractions$)$&nbsp; are best done in the coefficient representation&nbsp; $($or with polynomials firmly linked to it$)$.
 +
 +
*For multiplications,&nbsp; however,&nbsp; the exponential representation is more convenient.
  
 +
 +
 +
 +
 +
 +
 +
Hints:
 +
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes| "Definition and Properties of Reed-Solomon Codes"]].
 +
 +
* However,&nbsp; reference is also made to the chapter&nbsp; [[Channel_Coding/Extension_Field| "Extension Field"]].
 +
 +
 +
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{What element does the&nbsp; "$\rm A$"&nbsp; stand for in the addition table?
|type="[]"}
+
|type="()"}
- Falsch
+
+ $\rm A = 0$,
+ Richtig
+
- $\rm A = 1$,
 +
- $\rm A = \alpha^1$,
  
 +
{What element does the&nbsp; "$\rm B$"&nbsp; stand for in the addition table?
 +
|type="()"}
 +
- $\rm B = 0$,
 +
- $\rm B = 1$,
 +
+ $\rm B = \alpha^1$.
  
{Input-Box Frage
+
{What element does the&nbsp; "$\rm C$"&nbsp; stand for in the addition table?
|type="{}"}
+
|type="()"}
$\alpha$ = { 0.3 }
+
- $\rm C = \alpha^2$,
 +
- $\rm C = \alpha^3$,
 +
+ $\rm C = \alpha^4$.
  
 +
{What element does the&nbsp; "$\rm D$"&nbsp; stand for in the addition table?
 +
|type="()"}
 +
+ $\rm D = \alpha^2$,
 +
- $\rm D = \alpha^3$,
 +
- $\rm D = \alpha^4$.
  
 +
{What assignments apply in the multiplication table?
 +
|type="[]"}
 +
+ $\rm E = \alpha^5$,
 +
+ $\rm F = \alpha^1$,
 +
+ $\rm G = \alpha^6$.
  
 +
{What irreducible polynomial underlies these tables?
 +
|type="()"}
 +
- $p(\alpha) = \alpha^2 + \alpha + 1$,
 +
- $p(\alpha) = \alpha^3 + \alpha^2 + 1$,
 +
+ $p(\alpha) = \alpha^3 + \alpha + 1$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; Adding any element of an extension field based on&nbsp; $\rm GF(2)$&nbsp; to itself always yields&nbsp; $0$,&nbsp; as can be easily seen from the coefficient representation,&nbsp; for example:
'''2.'''
+
:$$\alpha^3 + \alpha^3 = (011) + (011) = (000) = 0
'''3.'''
+
\hspace{0.05cm}.$$
'''4.'''
+
 
'''5.'''
+
*That is: &nbsp; $\rm A$&nbsp; stands for the zero element &nbsp; &#8658; &nbsp; <u>Solution 1</u>.
'''6.'''
+
 
'''7.'''
+
 
{{ML-Fuß}}
+
 
 +
'''(2)'''&nbsp; $\rm B$&nbsp; is the result of adding&nbsp; $\alpha^5$&nbsp; and&nbsp; $\alpha^6$ &nbsp; &#8658; &nbsp; <u>Solution 3</u>:
 +
:$$\alpha^5 + \alpha^6 = (111) + (101) = (010) = \alpha^1 \hspace{0.05cm}.$$
 +
 
 +
*One could have found this result more simply,&nbsp; since in each row and column each element occurs exactly once.
 +
 +
*After&nbsp; $\rm A = 0$ &nbsp; is fixed,&nbsp; exactly only the element&nbsp; $\alpha^1$ &nbsp; is missing in the last row and the last column.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; $\rm C$&nbsp; is the result of the sum&nbsp;$\alpha^1 +\alpha^2$ &nbsp; &#8658; &nbsp; <u>Solution 3</u>:
 +
:$$\alpha^1 + \alpha^2 = (010) + (100) = (110) = \alpha^4 \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; $\rm D$&nbsp; is the result of&nbsp; $\alpha^3$&nbsp; and&nbsp; $\alpha^5$ &nbsp; &#8658; &nbsp; <u>Solution 1</u>:
 +
:$$\alpha^3 + \alpha^5 = (011) + (111) = (100) = \alpha^2
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; <u>All proposed solutions</u>&nbsp; are correct,&nbsp; as can be seen from row 2&nbsp; (multiplication with the&nbsp; "identity element"):
 +
[[File:P_ID2573__KC_Z_2_8e.png|right|frame|$\rm GF(2^3)$:&nbsp; Complete addition and multiplication tables]]
 +
*The complete tables for addition and multiplication are shown opposite.
 +
 
 +
*Because of the validity of&nbsp; $\alpha^i \cdot \alpha^j = \alpha^{(i+j)\hspace{0.1cm} {\rm mod}\hspace{0.1cm} 7} $,&nbsp; multiplication yields a symmetry that could be used to solve.
 +
 
 +
 
  
  
 +
'''(6)'''&nbsp; Correct here is the&nbsp; <u>proposed solution 3</u>:
 +
* All polynomials are indeed irreducible.&nbsp; However,&nbsp; one needs a degree-3 polynomial for&nbsp; $\rm GF(2^3)$.
 +
 +
*The third proposed solution results from the relation
 +
:$$\alpha^3 = \alpha + 1  \hspace{0.3cm}\Rightarrow  \hspace{0.3cm}
 +
p(\alpha) = \alpha^3 + \alpha + 1 = 0 \hspace{0.05cm}.$$
 +
{{ML-Fuß}}
  
[[Category:Aufgaben zu  Kanalcodierung|^2.3 Definition und Eigenschaften von Reed–Solomon–Codes
 
  
  
  
^]]
+
[[Category:Channel Coding: Exercises|^2.3 Reed–Solomon Codes^]]

Latest revision as of 16:40, 10 October 2022

$\rm GF(2^3)$:  Incomplete addition and multiplication tables

The graph shows the addition and multiplication table for the finite field  $\rm GF(2^3)$.  The tables are not complete.  Some fields  $($highlighted in color$)$  should be completed.

The elements are given both

  • in the exponent representation  $($with red lettering,  left and above$)$ and
  • in the coefficient representation  (gray lettering,  right and below). 


From this assignment one can already recognize the underlying irreducible polynomial  $p(\alpha)$.

  • Additions  $($and subtractions$)$  are best done in the coefficient representation  $($or with polynomials firmly linked to it$)$.
  • For multiplications,  however,  the exponential representation is more convenient.




Hints:


Questions

1

What element does the  "$\rm A$"  stand for in the addition table?

$\rm A = 0$,
$\rm A = 1$,
$\rm A = \alpha^1$,

2

What element does the  "$\rm B$"  stand for in the addition table?

$\rm B = 0$,
$\rm B = 1$,
$\rm B = \alpha^1$.

3

What element does the  "$\rm C$"  stand for in the addition table?

$\rm C = \alpha^2$,
$\rm C = \alpha^3$,
$\rm C = \alpha^4$.

4

What element does the  "$\rm D$"  stand for in the addition table?

$\rm D = \alpha^2$,
$\rm D = \alpha^3$,
$\rm D = \alpha^4$.

5

What assignments apply in the multiplication table?

$\rm E = \alpha^5$,
$\rm F = \alpha^1$,
$\rm G = \alpha^6$.

6

What irreducible polynomial underlies these tables?

$p(\alpha) = \alpha^2 + \alpha + 1$,
$p(\alpha) = \alpha^3 + \alpha^2 + 1$,
$p(\alpha) = \alpha^3 + \alpha + 1$.


Solution

(1)  Adding any element of an extension field based on  $\rm GF(2)$  to itself always yields  $0$,  as can be easily seen from the coefficient representation,  for example:

$$\alpha^3 + \alpha^3 = (011) + (011) = (000) = 0 \hspace{0.05cm}.$$
  • That is:   $\rm A$  stands for the zero element   ⇒   Solution 1.


(2)  $\rm B$  is the result of adding  $\alpha^5$  and  $\alpha^6$   ⇒   Solution 3:

$$\alpha^5 + \alpha^6 = (111) + (101) = (010) = \alpha^1 \hspace{0.05cm}.$$
  • One could have found this result more simply,  since in each row and column each element occurs exactly once.
  • After  $\rm A = 0$   is fixed,  exactly only the element  $\alpha^1$   is missing in the last row and the last column.


(3)  $\rm C$  is the result of the sum $\alpha^1 +\alpha^2$   ⇒   Solution 3:

$$\alpha^1 + \alpha^2 = (010) + (100) = (110) = \alpha^4 \hspace{0.05cm}.$$


(4)  $\rm D$  is the result of  $\alpha^3$  and  $\alpha^5$   ⇒   Solution 1:

$$\alpha^3 + \alpha^5 = (011) + (111) = (100) = \alpha^2 \hspace{0.05cm}.$$


(5)  All proposed solutions  are correct,  as can be seen from row 2  (multiplication with the  "identity element"):

$\rm GF(2^3)$:  Complete addition and multiplication tables
  • The complete tables for addition and multiplication are shown opposite.
  • Because of the validity of  $\alpha^i \cdot \alpha^j = \alpha^{(i+j)\hspace{0.1cm} {\rm mod}\hspace{0.1cm} 7} $,  multiplication yields a symmetry that could be used to solve.



(6)  Correct here is the  proposed solution 3:

  • All polynomials are indeed irreducible.  However,  one needs a degree-3 polynomial for  $\rm GF(2^3)$.
  • The third proposed solution results from the relation
$$\alpha^3 = \alpha + 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p(\alpha) = \alpha^3 + \alpha + 1 = 0 \hspace{0.05cm}.$$