Difference between revisions of "Aufgaben:Exercise 2.08Z: Addition and Multiplication in GF(2 power 3)"

From LNTwww
 
(22 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Definition und Eigenschaften von Reed–Solomon–Codes}}
+
{{quiz-Header|Buchseite=Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes}}
  
[[File:P_ID2536__KC_Z_2_8.png|right|frame|$\rm GF(2^3)$: Unvollständige Additions– und Multiplikationstabellen]]
+
[[File:P_ID2536__KC_Z_2_8.png|right|frame|$\rm GF(2^3)$:  Incomplete addition and multiplication tables]]
Die Grafik zeigt die Additions– und Multiplikationstabelle für den endlichen Körper $\rm GF(2^3)$. Die Tabellen sind nicht vollständig. Einige Felder sollen Sie ergänzen.
+
The graph shows the addition and multiplication table for the finite field  $\rm GF(2^3)$.  The tables are not complete.  Some fields  $($highlighted in color$)$  should be completed.
  
Die Elemente sind sowohl in der Exponentendarstellung (mit roter Beschriftung, links und oben) als auch in der Koeffizientendarstellung (graue Schrift, rechts und unten) angegeben. Aus dieser Zuordnung erkennt man bereits das zugrunde liegende irreduzible Polynom $p(\alpha)$.
+
The elements are given both
 +
*in the exponent representation  $($with red lettering,  left and above$)$ and
  
Additionen (und Subtraktionen) führt man am besten in der Koeffizientendarstellung (oder mit den damit fest verknüpften Polynomen) durch. Für Multiplikationen ist dagegen die Exponentendarstellung günstiger.
+
*in the coefficient representation  (gray lettering,  right and below). 
  
''Hinweis:''
 
* Die Aufgabe bezieht sich auf die Thematik der Kapitel [[Kanalcodierung/Erweiterungsk%C3%B6rper| Erweiterungskörper]] und [[Kanalcodierung/Definition_und_Eigenschaften_von_Reed%E2%80%93Solomon%E2%80%93Codes| Definition und Eigenschaften von Reed–Solomon–Codes]].
 
  
 +
From this assignment one can already recognize the underlying irreducible polynomial  $p(\alpha)$.
  
 +
*Additions  $($and subtractions$)$  are best done in the coefficient representation  $($or with polynomials firmly linked to it$)$.
 +
 +
*For multiplications,  however,  the exponential representation is more convenient.
  
  
Line 17: Line 20:
  
  
===Fragebogen===
+
 
 +
 
 +
Hints:
 +
* This exercise belongs to the chapter  [[Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes| "Definition and Properties of Reed-Solomon Codes"]].
 +
 
 +
* However,  reference is also made to the chapter  [[Channel_Coding/Extension_Field| "Extension Field"]].
 +
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice
+
{What element does the&nbsp; "$\rm A$"&nbsp; stand for in the addition table?
|type="[]"}
+
|type="()"}
+ correct
+
+ $\rm A = 0$,
- false
+
- $\rm A = 1$,
 +
- $\rm A = \alpha^1$,
  
{Multiple-Choice
+
{What element does the&nbsp; "$\rm B$"&nbsp; stand for in the addition table?
|type="[]"}
+
|type="()"}
+ correct
+
- $\rm B = 0$,
- false
+
- $\rm B = 1$,
 +
+ $\rm B = \alpha^1$.
  
{Multiple-Choice
+
{What element does the&nbsp; "$\rm C$"&nbsp; stand for in the addition table?
|type="[]"}
+
|type="()"}
+ correct
+
- $\rm C = \alpha^2$,
- false
+
- $\rm C = \alpha^3$,
 +
+ $\rm C = \alpha^4$.
  
{Multiple-Choice
+
{What element does the&nbsp; "$\rm D$"&nbsp; stand for in the addition table?
|type="[]"}
+
|type="()"}
+ correct
+
+ $\rm D = \alpha^2$,
- false
+
- $\rm D = \alpha^3$,
 +
- $\rm D = \alpha^4$.
  
{Multiple-Choice
+
{What assignments apply in the multiplication table?
 
|type="[]"}
 
|type="[]"}
+ correct
+
+ $\rm E = \alpha^5$,
- false
+
+ $\rm F = \alpha^1$,
 +
+ $\rm G = \alpha^6$.
  
{Multiple-Choice
+
{What irreducible polynomial underlies these tables?
|type="[]"}
+
|type="()"}
+ correct
+
- $p(\alpha) = \alpha^2 + \alpha + 1$,
- false
+
- $p(\alpha) = \alpha^3 + \alpha^2 + 1$,
 +
+ $p(\alpha) = \alpha^3 + \alpha + 1$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; Adding any element of an extension field based on&nbsp; $\rm GF(2)$&nbsp; to itself always yields&nbsp; $0$,&nbsp; as can be easily seen from the coefficient representation,&nbsp; for example:
'''(2)'''&nbsp;  
+
:$$\alpha^3 + \alpha^3 = (011) + (011) = (000) = 0
'''(3)'''&nbsp;  
+
\hspace{0.05cm}.$$
'''(4)'''&nbsp;  
+
 
'''(5)'''&nbsp;  
+
*That is: &nbsp; $\rm A$&nbsp; stands for the zero element &nbsp; &#8658; &nbsp; <u>Solution 1</u>.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; $\rm B$&nbsp; is the result of adding&nbsp; $\alpha^5$&nbsp; and&nbsp; $\alpha^6$ &nbsp; &#8658; &nbsp; <u>Solution 3</u>:
 +
:$$\alpha^5 + \alpha^6 = (111) + (101) = (010) = \alpha^1 \hspace{0.05cm}.$$
 +
 
 +
*One could have found this result more simply,&nbsp; since in each row and column each element occurs exactly once.
 +
 +
*After&nbsp; $\rm A = 0$ &nbsp; is fixed,&nbsp; exactly only the element&nbsp; $\alpha^1$ &nbsp; is missing in the last row and the last column.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; $\rm C$&nbsp; is the result of the sum&nbsp;$\alpha^1 +\alpha^2$ &nbsp; &#8658; &nbsp; <u>Solution 3</u>:
 +
:$$\alpha^1 + \alpha^2 = (010) + (100) = (110) = \alpha^4 \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; $\rm D$&nbsp; is the result of&nbsp; $\alpha^3$&nbsp; and&nbsp; $\alpha^5$ &nbsp; &#8658; &nbsp; <u>Solution 1</u>:
 +
:$$\alpha^3 + \alpha^5 = (011) + (111) = (100) = \alpha^2
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; <u>All proposed solutions</u>&nbsp; are correct,&nbsp; as can be seen from row 2&nbsp; (multiplication with the&nbsp; "identity element"):
 +
[[File:P_ID2573__KC_Z_2_8e.png|right|frame|$\rm GF(2^3)$:&nbsp; Complete addition and multiplication tables]]
 +
*The complete tables for addition and multiplication are shown opposite.
 +
 
 +
*Because of the validity of&nbsp; $\alpha^i \cdot \alpha^j = \alpha^{(i+j)\hspace{0.1cm} {\rm mod}\hspace{0.1cm} 7} $,&nbsp; multiplication yields a symmetry that could be used to solve.
 +
 
 +
 
 +
 
 +
 
 +
'''(6)'''&nbsp; Correct here is the&nbsp; <u>proposed solution 3</u>:
 +
* All polynomials are indeed irreducible.&nbsp; However,&nbsp; one needs a degree-3 polynomial for&nbsp; $\rm GF(2^3)$.
 +
 +
*The third proposed solution results from the relation
 +
:$$\alpha^3 = \alpha + 1  \hspace{0.3cm}\Rightarrow  \hspace{0.3cm}
 +
p(\alpha) = \alpha^3 + \alpha + 1 = 0 \hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
Line 62: Line 118:
  
  
[[Category:Aufgaben zu  Kanalcodierung|^2.3 Definition und Eigenschaften von Reed–Solomon–Codes^]]
+
[[Category:Channel Coding: Exercises|^2.3 Reed–Solomon Codes^]]

Latest revision as of 16:40, 10 October 2022

$\rm GF(2^3)$:  Incomplete addition and multiplication tables

The graph shows the addition and multiplication table for the finite field  $\rm GF(2^3)$.  The tables are not complete.  Some fields  $($highlighted in color$)$  should be completed.

The elements are given both

  • in the exponent representation  $($with red lettering,  left and above$)$ and
  • in the coefficient representation  (gray lettering,  right and below). 


From this assignment one can already recognize the underlying irreducible polynomial  $p(\alpha)$.

  • Additions  $($and subtractions$)$  are best done in the coefficient representation  $($or with polynomials firmly linked to it$)$.
  • For multiplications,  however,  the exponential representation is more convenient.




Hints:


Questions

1

What element does the  "$\rm A$"  stand for in the addition table?

$\rm A = 0$,
$\rm A = 1$,
$\rm A = \alpha^1$,

2

What element does the  "$\rm B$"  stand for in the addition table?

$\rm B = 0$,
$\rm B = 1$,
$\rm B = \alpha^1$.

3

What element does the  "$\rm C$"  stand for in the addition table?

$\rm C = \alpha^2$,
$\rm C = \alpha^3$,
$\rm C = \alpha^4$.

4

What element does the  "$\rm D$"  stand for in the addition table?

$\rm D = \alpha^2$,
$\rm D = \alpha^3$,
$\rm D = \alpha^4$.

5

What assignments apply in the multiplication table?

$\rm E = \alpha^5$,
$\rm F = \alpha^1$,
$\rm G = \alpha^6$.

6

What irreducible polynomial underlies these tables?

$p(\alpha) = \alpha^2 + \alpha + 1$,
$p(\alpha) = \alpha^3 + \alpha^2 + 1$,
$p(\alpha) = \alpha^3 + \alpha + 1$.


Solution

(1)  Adding any element of an extension field based on  $\rm GF(2)$  to itself always yields  $0$,  as can be easily seen from the coefficient representation,  for example:

$$\alpha^3 + \alpha^3 = (011) + (011) = (000) = 0 \hspace{0.05cm}.$$
  • That is:   $\rm A$  stands for the zero element   ⇒   Solution 1.


(2)  $\rm B$  is the result of adding  $\alpha^5$  and  $\alpha^6$   ⇒   Solution 3:

$$\alpha^5 + \alpha^6 = (111) + (101) = (010) = \alpha^1 \hspace{0.05cm}.$$
  • One could have found this result more simply,  since in each row and column each element occurs exactly once.
  • After  $\rm A = 0$   is fixed,  exactly only the element  $\alpha^1$   is missing in the last row and the last column.


(3)  $\rm C$  is the result of the sum $\alpha^1 +\alpha^2$   ⇒   Solution 3:

$$\alpha^1 + \alpha^2 = (010) + (100) = (110) = \alpha^4 \hspace{0.05cm}.$$


(4)  $\rm D$  is the result of  $\alpha^3$  and  $\alpha^5$   ⇒   Solution 1:

$$\alpha^3 + \alpha^5 = (011) + (111) = (100) = \alpha^2 \hspace{0.05cm}.$$


(5)  All proposed solutions  are correct,  as can be seen from row 2  (multiplication with the  "identity element"):

$\rm GF(2^3)$:  Complete addition and multiplication tables
  • The complete tables for addition and multiplication are shown opposite.
  • Because of the validity of  $\alpha^i \cdot \alpha^j = \alpha^{(i+j)\hspace{0.1cm} {\rm mod}\hspace{0.1cm} 7} $,  multiplication yields a symmetry that could be used to solve.



(6)  Correct here is the  proposed solution 3:

  • All polynomials are indeed irreducible.  However,  one needs a degree-3 polynomial for  $\rm GF(2^3)$.
  • The third proposed solution results from the relation
$$\alpha^3 = \alpha + 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p(\alpha) = \alpha^3 + \alpha + 1 = 0 \hspace{0.05cm}.$$