Difference between revisions of "Aufgaben:Exercise 2.08Z: Addition and Multiplication in GF(2 power 3)"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Kanalcodierung" to "Category:Channel Coding: Exercises")
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Definition und Eigenschaften von Reed–Solomon–Codes}}
+
{{quiz-Header|Buchseite=Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes}}
  
[[File:P_ID2536__KC_Z_2_8.png|right|frame|$\rm GF(2^3)$: Unvollständige Additions– und Multiplikationstabellen]]
+
[[File:P_ID2536__KC_Z_2_8.png|right|frame|$\rm GF(2^3)$:  Incomplete addition and multiplication tables]]
Die Grafik zeigt die Additions– und Multiplikationstabelle für den endlichen Körper  $\rm GF(2^3)$. Die Tabellen sind nicht vollständig. Einige (farblich hervorgehobene) Felder sollen Sie ergänzen.
+
The graph shows the addition and multiplication table for the finite field  $\rm GF(2^3)$.  The tables are not complete.  Some fields  $($highlighted in color$)$  should be completed.
  
Die Elemente sind sowohl in der Exponentendarstellung (mit roter Beschriftung, links und oben) als auch in der Koeffizientendarstellung (graue Schrift, rechts und unten) angegeben. Aus dieser Zuordnung erkennt man bereits das zugrunde liegende irreduzible Polynom  $p(\alpha)$.
+
The elements are given both
 +
*in the exponent representation  $($with red lettering,  left and above$)$ and
  
*Additionen (und Subtraktionen) führt man am besten in der Koeffizientendarstellung (oder mit den damit fest verknüpften Polynomen) durch.
+
*in the coefficient representation  (gray lettering,  right and below). 
*Für Multiplikationen ist dagegen die Exponentendarstellung günstiger.
 
  
  
 +
From this assignment one can already recognize the underlying irreducible polynomial  $p(\alpha)$.
  
 +
*Additions  $($and subtractions$)$  are best done in the coefficient representation  $($or with polynomials firmly linked to it$)$.
 +
 +
*For multiplications,  however,  the exponential representation is more convenient.
  
  
  
  
''Hinweise:''
 
* Die Aufgabe gehört zum Kapitel  [[Channel_Coding/Definition_und_Eigenschaften_von_Reed%E2%80%93Solomon%E2%80%93Codes| Definition und Eigenschaften von Reed–Solomon–Codes]].
 
* Bezug genommen wird aber auch auf das Kapitel  [[Channel_Coding/Erweiterungsk%C3%B6rper| Erweiterungskörper]].
 
  
  
  
===Fragebogen===
+
Hints:
 +
* This exercise belongs to the chapter  [[Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes| "Definition and Properties of Reed-Solomon Codes"]].
 +
 
 +
* However,  reference is also made to the chapter  [[Channel_Coding/Extension_Field| "Extension Field"]].
 +
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Für welches Element steht das&nbsp; $\rm A$&nbsp; in der Additionstabelle?
+
{What element does the&nbsp; "$\rm A$"&nbsp; stand for in the addition table?
 
|type="()"}
 
|type="()"}
 
+ $\rm A = 0$,
 
+ $\rm A = 0$,
Line 29: Line 37:
 
- $\rm A = \alpha^1$,
 
- $\rm A = \alpha^1$,
  
{Für welches Element steht das&nbsp; $\rm B$&nbsp; in der Additionstabelle?
+
{What element does the&nbsp; "$\rm B$"&nbsp; stand for in the addition table?
 
|type="()"}
 
|type="()"}
 
- $\rm B = 0$,
 
- $\rm B = 0$,
Line 35: Line 43:
 
+ $\rm B = \alpha^1$.
 
+ $\rm B = \alpha^1$.
  
{Für welches Element steht das&nbsp; $\rm C$&nbsp; in der Additionstabelle?
+
{What element does the&nbsp; "$\rm C$"&nbsp; stand for in the addition table?
 
|type="()"}
 
|type="()"}
 
- $\rm C = \alpha^2$,
 
- $\rm C = \alpha^2$,
Line 41: Line 49:
 
+ $\rm C = \alpha^4$.
 
+ $\rm C = \alpha^4$.
  
{Für welches Element steht das&nbsp; $\rm D$&nbsp; in der Additionstabelle?
+
{What element does the&nbsp; "$\rm D$"&nbsp; stand for in the addition table?
 
|type="()"}
 
|type="()"}
 
+ $\rm D = \alpha^2$,
 
+ $\rm D = \alpha^2$,
Line 47: Line 55:
 
- $\rm D = \alpha^4$.
 
- $\rm D = \alpha^4$.
  
{Welche Zuordnungen gelten in der Multiplikationstabelle?
+
{What assignments apply in the multiplication table?
 
|type="[]"}
 
|type="[]"}
 
+ $\rm E = \alpha^5$,
 
+ $\rm E = \alpha^5$,
Line 53: Line 61:
 
+ $\rm G = \alpha^6$.
 
+ $\rm G = \alpha^6$.
  
{Welches irreduzible Polynom liegt diesen Tabellen zugrunde?
+
{What irreducible polynomial underlies these tables?
 
|type="()"}
 
|type="()"}
 
- $p(\alpha) = \alpha^2 + \alpha + 1$,
 
- $p(\alpha) = \alpha^2 + \alpha + 1$,
Line 60: Line 68:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Addition eines jeden Elements eines Erweiterungskörpers, der auf $\rm GF(2)$ basiert, mit sich selbst ergibt stets $0$, wie man anhand der Koeffizientendarstellung leicht erkennt, zum Beispiel:
+
'''(1)'''&nbsp; Adding any element of an extension field based on&nbsp; $\rm GF(2)$&nbsp; to itself always yields&nbsp; $0$,&nbsp; as can be easily seen from the coefficient representation,&nbsp; for example:
 
:$$\alpha^3 + \alpha^3 = (011) + (011) = (000) = 0  
 
:$$\alpha^3 + \alpha^3 = (011) + (011) = (000) = 0  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Das heißt: &nbsp; $\rm A$steht für das Nullelement &nbsp; &#8658; &nbsp; <u>Lösungsvorschlag 1</u>.
+
*That is: &nbsp; $\rm A$&nbsp; stands for the zero element &nbsp; &#8658; &nbsp; <u>Solution 1</u>.
  
  
  
'''(2)'''&nbsp; $\rm B$ ist das Ergebnis der Addition von $\alpha^5$ und $\alpha^6$ &nbsp;&#8658;&nbsp; <u>Lösungsvorschlag 3</u>:
+
'''(2)'''&nbsp; $\rm B$&nbsp; is the result of adding&nbsp; $\alpha^5$&nbsp; and&nbsp; $\alpha^6$ &nbsp; &#8658; &nbsp; <u>Solution 3</u>:
 
:$$\alpha^5 + \alpha^6 = (111) + (101) = (010) = \alpha^1 \hspace{0.05cm}.$$
 
:$$\alpha^5 + \alpha^6 = (111) + (101) = (010) = \alpha^1 \hspace{0.05cm}.$$
  
*Man hätte dieses Ergebnis auch einfacher finden können, da in jeder Zeile und Spalte jedes Element genau einmal vorkommt.  
+
*One could have found this result more simply,&nbsp; since in each row and column each element occurs exactly once.
*Nachdem $\rm A = 0$ festliegt, fehlt in der letzten Zeile und der letzten Spalte genau nur noch das Element $\alpha^1$.
+
 +
*After&nbsp; $\rm A = 0$ &nbsp; is fixed,&nbsp; exactly only the element&nbsp; $\alpha^1$ &nbsp; is missing in the last row and the last column.
  
  
  
'''(3)'''&nbsp; $\rm C$ ist das Ergebnis der Summe von $\alpha^1$ und $\alpha^2$ &nbsp; &#8658; &nbsp; <u>Lösungsvorschlag 3</u>:
+
'''(3)'''&nbsp; $\rm C$&nbsp; is the result of the sum&nbsp;$\alpha^1 +\alpha^2$ &nbsp; &#8658; &nbsp; <u>Solution 3</u>:
 
:$$\alpha^1 + \alpha^2 = (010) + (100) = (110) = \alpha^4 \hspace{0.05cm}.$$
 
:$$\alpha^1 + \alpha^2 = (010) + (100) = (110) = \alpha^4 \hspace{0.05cm}.$$
  
  
  
'''(4)'''&nbsp; $\rm D$ ist das Ergebnis von $\alpha^3$ und $\alpha^5$ &nbsp; &#8658; &nbsp; <u>Lösungsvorschlag 1</u>:
+
'''(4)'''&nbsp; $\rm D$&nbsp; is the result of&nbsp; $\alpha^3$&nbsp; and&nbsp; $\alpha^5$ &nbsp; &#8658; &nbsp; <u>Solution 1</u>:
 
:$$\alpha^3 + \alpha^5 = (011) + (111) = (100) = \alpha^2  
 
:$$\alpha^3 + \alpha^5 = (011) + (111) = (100) = \alpha^2  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Line 89: Line 98:
  
  
'''(5)'''&nbsp; <u>Alle Lösungsvorschläge</u> sind richtig, wie man aus der Zeile 2 (Multiplikation mit dem Einselelement) erkennt:
+
'''(5)'''&nbsp; <u>All proposed solutions</u>&nbsp; are correct,&nbsp; as can be seen from row 2&nbsp; (multiplication with the&nbsp; "identity element"):
[[File:P_ID2573__KC_Z_2_8e.png|right|frame|$\rm GF(2^3)$: Vollständige Additions– und Multiplikationstabellen]]  
+
[[File:P_ID2573__KC_Z_2_8e.png|right|frame|$\rm GF(2^3)$:&nbsp; Complete addition and multiplication tables]]  
*Nebenstehend sehen Sie die vollständigen Tabellen für die Addition und die Multiplikation.
+
*The complete tables for addition and multiplication are shown opposite.
*Aufgrund der Gültigkeit von $\alpha^i \cdot \alpha^j = \alpha^{(i+j)\hspace{0.1cm} {\rm mod}\hspace{0.1cm} 7} $ ergibt sich bei der Multiplikation eine Symmetrie, die man zur Lösung nutzen könnte.
+
 
 +
*Because of the validity of&nbsp; $\alpha^i \cdot \alpha^j = \alpha^{(i+j)\hspace{0.1cm} {\rm mod}\hspace{0.1cm} 7} $,&nbsp; multiplication yields a symmetry that could be used to solve.
  
  
  
  
'''(6)'''&nbsp; Richtig ist hier der <u>Lösungsvorschlag 3</u>:
+
'''(6)'''&nbsp; Correct here is the&nbsp; <u>proposed solution 3</u>:
* Alle Polynome sind zwar irreduzibel. Man benötigt aber für $\rm GF(2^3)$ ein Grad&ndash;3&ndash;Polynom.  
+
* All polynomials are indeed irreducible.&nbsp; However,&nbsp; one needs a degree-3 polynomial for&nbsp; $\rm GF(2^3)$.
*Der dritte Lösungsvorschlag ergibt sich aus der Beziehung
+
 +
*The third proposed solution results from the relation
 
:$$\alpha^3 = \alpha + 1  \hspace{0.3cm}\Rightarrow  \hspace{0.3cm}
 
:$$\alpha^3 = \alpha + 1  \hspace{0.3cm}\Rightarrow  \hspace{0.3cm}
 
p(\alpha) = \alpha^3 + \alpha + 1 = 0 \hspace{0.05cm}.$$
 
p(\alpha) = \alpha^3 + \alpha + 1 = 0 \hspace{0.05cm}.$$
Line 107: Line 118:
  
  
[[Category:Channel Coding: Exercises|^2.3 Zu den Reed–Solomon–Codes^]]
+
[[Category:Channel Coding: Exercises|^2.3 Reed–Solomon Codes^]]

Latest revision as of 16:40, 10 October 2022

$\rm GF(2^3)$:  Incomplete addition and multiplication tables

The graph shows the addition and multiplication table for the finite field  $\rm GF(2^3)$.  The tables are not complete.  Some fields  $($highlighted in color$)$  should be completed.

The elements are given both

  • in the exponent representation  $($with red lettering,  left and above$)$ and
  • in the coefficient representation  (gray lettering,  right and below). 


From this assignment one can already recognize the underlying irreducible polynomial  $p(\alpha)$.

  • Additions  $($and subtractions$)$  are best done in the coefficient representation  $($or with polynomials firmly linked to it$)$.
  • For multiplications,  however,  the exponential representation is more convenient.




Hints:


Questions

1

What element does the  "$\rm A$"  stand for in the addition table?

$\rm A = 0$,
$\rm A = 1$,
$\rm A = \alpha^1$,

2

What element does the  "$\rm B$"  stand for in the addition table?

$\rm B = 0$,
$\rm B = 1$,
$\rm B = \alpha^1$.

3

What element does the  "$\rm C$"  stand for in the addition table?

$\rm C = \alpha^2$,
$\rm C = \alpha^3$,
$\rm C = \alpha^4$.

4

What element does the  "$\rm D$"  stand for in the addition table?

$\rm D = \alpha^2$,
$\rm D = \alpha^3$,
$\rm D = \alpha^4$.

5

What assignments apply in the multiplication table?

$\rm E = \alpha^5$,
$\rm F = \alpha^1$,
$\rm G = \alpha^6$.

6

What irreducible polynomial underlies these tables?

$p(\alpha) = \alpha^2 + \alpha + 1$,
$p(\alpha) = \alpha^3 + \alpha^2 + 1$,
$p(\alpha) = \alpha^3 + \alpha + 1$.


Solution

(1)  Adding any element of an extension field based on  $\rm GF(2)$  to itself always yields  $0$,  as can be easily seen from the coefficient representation,  for example:

$$\alpha^3 + \alpha^3 = (011) + (011) = (000) = 0 \hspace{0.05cm}.$$
  • That is:   $\rm A$  stands for the zero element   ⇒   Solution 1.


(2)  $\rm B$  is the result of adding  $\alpha^5$  and  $\alpha^6$   ⇒   Solution 3:

$$\alpha^5 + \alpha^6 = (111) + (101) = (010) = \alpha^1 \hspace{0.05cm}.$$
  • One could have found this result more simply,  since in each row and column each element occurs exactly once.
  • After  $\rm A = 0$   is fixed,  exactly only the element  $\alpha^1$   is missing in the last row and the last column.


(3)  $\rm C$  is the result of the sum $\alpha^1 +\alpha^2$   ⇒   Solution 3:

$$\alpha^1 + \alpha^2 = (010) + (100) = (110) = \alpha^4 \hspace{0.05cm}.$$


(4)  $\rm D$  is the result of  $\alpha^3$  and  $\alpha^5$   ⇒   Solution 1:

$$\alpha^3 + \alpha^5 = (011) + (111) = (100) = \alpha^2 \hspace{0.05cm}.$$


(5)  All proposed solutions  are correct,  as can be seen from row 2  (multiplication with the  "identity element"):

$\rm GF(2^3)$:  Complete addition and multiplication tables
  • The complete tables for addition and multiplication are shown opposite.
  • Because of the validity of  $\alpha^i \cdot \alpha^j = \alpha^{(i+j)\hspace{0.1cm} {\rm mod}\hspace{0.1cm} 7} $,  multiplication yields a symmetry that could be used to solve.



(6)  Correct here is the  proposed solution 3:

  • All polynomials are indeed irreducible.  However,  one needs a degree-3 polynomial for  $\rm GF(2^3)$.
  • The third proposed solution results from the relation
$$\alpha^3 = \alpha + 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p(\alpha) = \alpha^3 + \alpha + 1 = 0 \hspace{0.05cm}.$$