Difference between revisions of "Aufgaben:Exercise 2.10Z: Code Rate and Minimum Distance"

From LNTwww
Line 23: Line 23:
  
 
Hints:
 
Hints:
* The exercise belongs to the chapter  [[Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes| "Definition and properties of Reed–Solomon Codes"]].
+
* The exercise belongs to the chapter  [[Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes| "Definition and Properties of Reed–Solomon Codes"]].
  
 
* Information relevant to this exercise can be found on the  [[Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes#Code_name_and_code_rate|"Code name and code rate"]] page.
 
* Information relevant to this exercise can be found on the  [[Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes#Code_name_and_code_rate|"Code name and code rate"]] page.

Revision as of 12:03, 12 October 2022

The inventors of the Reed-Solomon codes

The codes developed by  Irving Stoy Reed  and  Gustave Solomon  in the early 1960s are referred to in this tutorial as follows:

$${\rm RSC} \, (n, \, k, \, d_{\rm min}) _q.$$

The code parameters have the following meanings:

  • $q = 2^m$  is an indication of the  "size"  of the Galois field   ⇒   ${\rm GF}(q)$,
  • $n = q - 1$  is the  "code length"  $($symbol number of a code word$)$,
  • $k$  indicates the  "dimension"  $($symbol number of an information block$)$,
  • $d_{\rm min}$  denotes the  "minimum distance"  between two codewords. 
  • For any Reed-Solomon code:
$$d_{\rm min} = n - k + 1.$$

No other code with the same  $k$  and  $n$  yields a larger value.



Hints:



Questions

1

Specify the characteristics of the   ${\rm RSC} \, (255, \, 223, \, d_{\rm min})_q$ .

$q \hspace{0.2cm} = \ $

$e \hspace{0.2cm} = \ $

$t \hspace{0.2cm} = \ $

$R \hspace{0.2cm} = \ $

$d_{\rm min} \ = \ $

2

Specify the characteristics of the   $\rm RSC \, (2040, \, 1784, \, d_{\rm min})_2$ .

$R \hspace{0.2cm} = \ $

$d_{\rm min} \ = \ $

3

How many bit errors  $(N_3)$  may a received word  $\underline{y}$  have at most,  so that it is  certainly decoded correctly?

$N_{3} \ = \ $

4

How many bit errors  $(N_4)$  may a received word  $\underline{y}$  have  in the best case  so that it could still be  correctly decoded?

$N_{4} \ = \ $


Solution

(1)  From the code length $n = 255$ follows $q \ \underline{= 256}$.

  • The code rate is given by $R = {223}/{255} \hspace{0.15cm}\underline {=0.8745}\hspace{0.05cm}.$
  • The minimum distance is $d_{\rm min} = n - k +1 = 255 - 223 +1 \hspace{0.15cm}\underline {=33}\hspace{0.05cm}.$
  • This allows
  • $e = d_{\rm min} - 1 \ \underline{= 32}$ symbol errors can be detected, and.
  • $t = e/2$ (rounded down), so $\underline{t = 16}$ symbol errors can be corrected.


(2)  The code $\rm RSC \, (2040, \, 1784, \, d_{\rm min})_2$ is the binary representation of the ${\rm RSC} discussed in (1) \, (255, \, 223, \, 33)_{256}$ with exactly the same code rate $R \ \underline{= 0.8745}$ and also the same minimum distance $d_{\rm min} \ \underline{= 33}$ as this one. Here $8$ bits (1 byte) are used per code symbol.


(3)  From $d_{\rm min} = 33$ follows again $t = 16 \ \Rightarrow \ N_{3} \ \underline{= 16}$.

  • If exactly one bit is corrupted in each code symbol, this also means 16 symbol errors.
  • This is the maximum value that the Reed–Solomon decoder can still handle.


(4)  The RS decoder can correct 16 corrupted code symbols,

  • whereby it does not matter whether in a code symbol only one bit or all $m = 8$ bits have been corrupted.
  • Therefore, with the most favorable error distribution, up to $N_4 = 8 \cdot 16 \ \underline{= 128}$ bits can be corrupted without the code word being incorrectly decoded.