Difference between revisions of "Aufgaben:Exercise 2.10Z: Code Rate and Minimum Distance"

From LNTwww
 
(4 intermediate revisions by 2 users not shown)
Line 2: Line 2:
  
 
[[File:P_ID2526__KC_Z_2_10.png|right|frame|The inventors of the Reed-Solomon codes]]
 
[[File:P_ID2526__KC_Z_2_10.png|right|frame|The inventors of the Reed-Solomon codes]]
The codes developed by  [https://en.wikipedia.org/wiki/Irving_S._Reed "Irving Stoy Reed"]  and  [https://en.wikipedia.org/wiki/Gustave_Solomon "Gustave Solomon"]  in the early 1960s are referred to in this tutorial as follows:  
+
The codes developed by  [https://en.wikipedia.org/wiki/Irving_S._Reed Irving Stoy Reed]  and  [https://en.wikipedia.org/wiki/Gustave_Solomon Gustave Solomon]  in the early 1960s are referred to in this tutorial as follows:  
 
:$${\rm RSC} \, (n, \, k, \, d_{\rm min}) _q.$$   
 
:$${\rm RSC} \, (n, \, k, \, d_{\rm min}) _q.$$   
  
Line 8: Line 8:
 
* $q = 2^m$  is an indication of the  "size"  of the Galois field   ⇒   ${\rm GF}(q)$,
 
* $q = 2^m$  is an indication of the  "size"  of the Galois field   ⇒   ${\rm GF}(q)$,
  
* $n = q - 1$  is the  "code length"  (symbol number of a code word),
+
* $n = q - 1$  is the  "code length"  $($symbol number of a code word$)$,
 
   
 
   
* $k$  indicates the  "dimension"  (symbol number of an information block),
+
* $k$  indicates the  "dimension"  $($symbol number of an information block$)$,
  
* $d_{\rm min}$  denotes the  "minimum distance"  between two codewords.   
+
* $d_{\rm min}$  denotes the  "minimum distance"  between two code words.   
  
 
*For any Reed-Solomon code:
 
*For any Reed-Solomon code:
Line 23: Line 23:
  
 
Hints:
 
Hints:
* The exercise belongs to the chapter  [[Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes| "Definition and properties of Reed–Solomon Codes"]].
+
* The exercise belongs to the chapter  [[Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes| "Definition and Properties of Reed–Solomon Codes"]].
 +
 
 
* Information relevant to this exercise can be found on the  [[Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes#Code_name_and_code_rate|"Code name and code rate"]] page.
 
* Information relevant to this exercise can be found on the  [[Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes#Code_name_and_code_rate|"Code name and code rate"]] page.
  
Line 32: Line 33:
 
===Questions===
 
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Specify the characteristics of the&nbsp; ${\rm RSC} \, (255, \, 223, \, d_{\rm min})_q$&nbsp;.
+
{Specify the characteristics of the &nbsp; ${\rm RSC} \, (255, \, 223, \, d_{\rm min})_q$.
 
|type="{}"}
 
|type="{}"}
 
$q \hspace{0.2cm} = \ ${ 256 }
 
$q \hspace{0.2cm} = \ ${ 256 }
Line 40: Line 41:
 
$d_{\rm min} \ = \ ${ 33 }
 
$d_{\rm min} \ = \ ${ 33 }
  
{Specify the characteristics of the&nbsp; $\rm RSC \, (2040, \, 1784, \, d_{\rm min})_2$&nbsp;.
+
{Specify the characteristics of the &nbsp; $\rm RSC \, (2040, \, 1784, \, d_{\rm min})_2$&nbsp;.
 
|type="{}"}
 
|type="{}"}
 
$R \hspace{0.2cm} = \ ${ 0.8745 3% }
 
$R \hspace{0.2cm} = \ ${ 0.8745 3% }
 
$d_{\rm min} \ = \ ${ 33 }
 
$d_{\rm min} \ = \ ${ 33 }
  
{How many bit errors&nbsp; $(N_3)$&nbsp; may a received word&nbsp; $\underline{y}$&nbsp; have at most, so that it is <u>certainly decoded correctly</u>?
+
{How many bit errors&nbsp; $(N_3)$&nbsp; may a received word&nbsp; $\underline{y}$&nbsp; have at most,&nbsp; so that it is&nbsp; <u>certainly decoded correctly</u>?
 
|type="{}"}
 
|type="{}"}
 
$N_{3} \ = \ $ { 16 }
 
$N_{3} \ = \ $ { 16 }
  
{How many bit errors&nbsp; $(N_4)$&nbsp; may a received word&nbsp; $\underline{y}$&nbsp; have in the best case so that it could still be <u>correctly decoded</u>?
+
{How many bit errors&nbsp; $(N_4)$&nbsp; may a received word&nbsp; $\underline{y}$&nbsp; have&nbsp; <u>in the best case</u>&nbsp; so that it could still be&nbsp; <u>correctly decoded</u>?
 
|type="{}"}
 
|type="{}"}
 
$N_{4} \ = \ $ { 128 }
 
$N_{4} \ = \ $ { 128 }
Line 56: Line 57:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; From the code length $n = 255$ follows $q \ \underline{= 256}$.  
+
'''(1)'''&nbsp; From the code length&nbsp; $n = 255$&nbsp; follows&nbsp; $q \ \underline{= 256}$.  
  
*The code rate is given by $R = {223}/{255} \hspace{0.15cm}\underline {=0.8745}\hspace{0.05cm}.$
+
*The code rate is given by&nbsp; $R = {223}/{255} \hspace{0.15cm}\underline {=0.8745}\hspace{0.05cm}.$
  
*The minimum distance is $d_{\rm min} = n - k +1 = 255 - 223 +1  
+
*The minimum distance is&nbsp; $d_{\rm min} = n - k +1 = 255 - 223 +1  
 
  \hspace{0.15cm}\underline {=33}\hspace{0.05cm}.$
 
  \hspace{0.15cm}\underline {=33}\hspace{0.05cm}.$
  
*This allows
+
*This allows:
:* $e = d_{\rm min} - 1 \ \underline{= 32}$ symbol errors can be detected, and.
+
:* $e = d_{\rm min} - 1 \ \underline{= 32}$&nbsp; symbol errors can be detected, and
:* $t = e/2$ (rounded down), so $\underline{t = 16}$ symbol errors can be corrected.
+
 +
:* $t = e/2$&nbsp; $($rounded down$)$.&nbsp; So&nbsp; $\underline{t = 16}$&nbsp; symbol errors can be corrected.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; The code&nbsp; $\rm RSC \, (2040, \, 1784, \, d_{\rm min})_2$&nbsp; is the binary representation of the&nbsp; ${\rm RSC} \, (255, \, 223, \, d_{\rm min})_{256}$&nbsp; discussed in&nbsp; '''(1)'''&nbsp; 
 +
*with exactly the same code rate&nbsp; $R \ \underline{= 0.8745}$&nbsp; and
  
 +
*also the same minimum distance&nbsp; $d_{\rm min} \ \underline{= 33}$&nbsp; as this one.&nbsp;
  
  
'''(2)'''&nbsp; The code $\rm RSC \, (2040, \, 1784, \, d_{\rm min})_2$ is the binary representation of the ${\rm RSC} discussed in (1) \, (255, \, 223, \, 33)_{256}$ with exactly the same code rate $R \ \underline{= 0.8745}$ and also the same minimum distance $d_{\rm min} \ \underline{= 33}$ as this one. Here $8$ bits (1 byte) are used per code symbol.
+
Here&nbsp; $8$&nbsp; bits&nbsp; (1 byte)&nbsp; are used per code symbol.
  
  
  
'''(3)'''&nbsp; From $d_{\rm min} = 33$ follows again $t = 16 \ \Rightarrow \ N_{3} \ \underline{= 16}$.  
+
'''(3)'''&nbsp; From&nbsp; $d_{\rm min} = 33$&nbsp; follows again&nbsp; $t = 16 \ \Rightarrow \ N_{3} \ \underline{= 16}$.  
*If exactly one bit is corrupted in each code symbol, this also means 16 symbol errors.  
+
*If exactly one bit is falsified in each code symbol,&nbsp; this also means&nbsp; $16$&nbsp; symbol errors.
 +
 
*This is the maximum value that the Reed&ndash;Solomon decoder can still handle.
 
*This is the maximum value that the Reed&ndash;Solomon decoder can still handle.
  
  
'''(4)'''&nbsp; The RS decoder can correct 16 corrupted code symbols,
+
 
*whereby it does not matter whether in a code symbol only one bit or all $m = 8$ bits have been corrupted.  
+
'''(4)'''&nbsp; The Reed&ndash;Solomon decoder can correct&nbsp; $16$&nbsp; falsified code symbols.
*Therefore, with the most favorable error distribution, up to $N_4 = 8 \cdot 16 \ \underline{= 128}$ bits can be corrupted without the code word being incorrectly decoded.
+
*It does not matter whether in a code symbol only one bit or all&nbsp; $m = 8$&nbsp; bits have been falsified.
 +
 +
*Therefore,&nbsp; with the most favorable error distribution,&nbsp; up to&nbsp; $N_4 = 8 \cdot 16 \ \underline{= 128}$&nbsp; bits can be falsified without the code word being incorrectly decoded.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 17:28, 23 January 2023

The inventors of the Reed-Solomon codes

The codes developed by  Irving Stoy Reed  and  Gustave Solomon  in the early 1960s are referred to in this tutorial as follows:

$${\rm RSC} \, (n, \, k, \, d_{\rm min}) _q.$$

The code parameters have the following meanings:

  • $q = 2^m$  is an indication of the  "size"  of the Galois field   ⇒   ${\rm GF}(q)$,
  • $n = q - 1$  is the  "code length"  $($symbol number of a code word$)$,
  • $k$  indicates the  "dimension"  $($symbol number of an information block$)$,
  • $d_{\rm min}$  denotes the  "minimum distance"  between two code words. 
  • For any Reed-Solomon code:
$$d_{\rm min} = n - k + 1.$$

No other code with the same  $k$  and  $n$  yields a larger value.



Hints:



Questions

1

Specify the characteristics of the   ${\rm RSC} \, (255, \, 223, \, d_{\rm min})_q$.

$q \hspace{0.2cm} = \ $

$e \hspace{0.2cm} = \ $

$t \hspace{0.2cm} = \ $

$R \hspace{0.2cm} = \ $

$d_{\rm min} \ = \ $

2

Specify the characteristics of the   $\rm RSC \, (2040, \, 1784, \, d_{\rm min})_2$ .

$R \hspace{0.2cm} = \ $

$d_{\rm min} \ = \ $

3

How many bit errors  $(N_3)$  may a received word  $\underline{y}$  have at most,  so that it is  certainly decoded correctly?

$N_{3} \ = \ $

4

How many bit errors  $(N_4)$  may a received word  $\underline{y}$  have  in the best case  so that it could still be  correctly decoded?

$N_{4} \ = \ $


Solution

(1)  From the code length  $n = 255$  follows  $q \ \underline{= 256}$.

  • The code rate is given by  $R = {223}/{255} \hspace{0.15cm}\underline {=0.8745}\hspace{0.05cm}.$
  • The minimum distance is  $d_{\rm min} = n - k +1 = 255 - 223 +1 \hspace{0.15cm}\underline {=33}\hspace{0.05cm}.$
  • This allows:
  • $e = d_{\rm min} - 1 \ \underline{= 32}$  symbol errors can be detected, and
  • $t = e/2$  $($rounded down$)$.  So  $\underline{t = 16}$  symbol errors can be corrected.


(2)  The code  $\rm RSC \, (2040, \, 1784, \, d_{\rm min})_2$  is the binary representation of the  ${\rm RSC} \, (255, \, 223, \, d_{\rm min})_{256}$  discussed in  (1) 

  • with exactly the same code rate  $R \ \underline{= 0.8745}$  and
  • also the same minimum distance  $d_{\rm min} \ \underline{= 33}$  as this one. 


Here  $8$  bits  (1 byte)  are used per code symbol.


(3)  From  $d_{\rm min} = 33$  follows again  $t = 16 \ \Rightarrow \ N_{3} \ \underline{= 16}$.

  • If exactly one bit is falsified in each code symbol,  this also means  $16$  symbol errors.
  • This is the maximum value that the Reed–Solomon decoder can still handle.


(4)  The Reed–Solomon decoder can correct  $16$  falsified code symbols.

  • It does not matter whether in a code symbol only one bit or all  $m = 8$  bits have been falsified.
  • Therefore,  with the most favorable error distribution,  up to  $N_4 = 8 \cdot 16 \ \underline{= 128}$  bits can be falsified without the code word being incorrectly decoded.