Difference between revisions of "Aufgaben:Exercise 2.10Z: Noise with DSB-AM and SSB-AM"

From LNTwww
m
Line 3: Line 3:
 
}}
 
}}
  
[[File:EN_Mod_Z_2_9_c.png|right|frame|Gemeinsames Blockschaltbild für ZSB-AM und ESB-AM]]
+
[[File:EN_Mod_Z_2_9_c.png|right|frame|Shared block diagram for DSB-AM and SSB-AM]]
Nun soll der Einfluss von Rauschen auf den Sinken–Störabstand  $10 · \lg ρ_v$  bei  ZSB–AM–  bzw.  ESB–AM–Übertragung vergleichend gegenübergestellt werden.  Die Grafik zeigt das zugrundeliegende Blockschaltbild.
+
Now the influence of noise on the sink-to-noise ratio  $10 · \lg ρ_v$  for both   DSB–AM–  and  SSB–AM transmission will be compared.   The illustration shows the underlying block diagram.
  
  
Rot hervorgehoben sind in diesem Bild die Unterschiede zwischen den beiden Systemvarianten, nämlich der Modulator  (ZSB bzw. ESB)  sowie die dimensionslose Konstante
+
The differences between the two system variants are highlighted in red on the image, namely the modulator  (DSB or SSB)  as well as the dimensionless constant
 
:$$ K = \left\{ \begin{array}{c} 2/\alpha_{\rm K} \\ 4/\alpha_{\rm K} \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{bei}} \\ {\rm{bei}} \\ \end{array}\begin{array}{*{20}c} {\rm ZSB} \hspace{0.05cm}, \\ {\rm ESB} \hspace{0.05cm} \\ \end{array}$$
 
:$$ K = \left\{ \begin{array}{c} 2/\alpha_{\rm K} \\ 4/\alpha_{\rm K} \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{bei}} \\ {\rm{bei}} \\ \end{array}\begin{array}{*{20}c} {\rm ZSB} \hspace{0.05cm}, \\ {\rm ESB} \hspace{0.05cm} \\ \end{array}$$
des empfängerseitigen Trägersignals  $z_{\rm E}(t) = K · \cos(ω_{\rm T} · t)$, das als frequenz- und phasensynchron mit dem Trägersignal  $z(t)$  beim Sender angenommen werden soll.
+
of the receiver-side carrier signal   $z_{\rm E}(t) = K · \cos(ω_{\rm T} · t)$, which is assumed to be frequency and phase cynchronous with the carrier signal  $z(t)$  at the transmitter.
  
  
In grüner Farbe beschriftet sind diejenigen Systemkenngrößen, die in der gemeinsamen Leistungskenngröße zusammengefasst sind:  
+
The system parameters captured by the shared performance parameter are labelled in green:  
 
:$$\xi = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}$$
 
:$$\xi = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}$$
  
  
Weiter ist zu beachten:
+
Further consider:
* Das Cosinussignal  $q(t)$  mit der Frequenz  $B_{\rm NF}$  steht stellvertretend für ein aus mehreren Frequenzen zusammengesetztes Quellensignal der Bandbreite  $B_{\rm NF}$.
+
* The cosine signal  $q(t)$  with frequency  $B_{\rm NF}$  stands for a source signal with bandwidth  $B_{\rm NF}$ composed of multiple frequencies.
* Die ZSB–AM mit Träger wird durch den Modulationsgrad  $m = A_{\rm N}/A_{\rm T}$  parametrisiert, während die ESB–AM durch das Seitenband–zu–Träger–Verhältnis  $μ = A_{\rm N}/(2 · A_{\rm T})$  bestimmt ist.
+
* DSB–AM with carrier is parameterized by a modulation depth of  $m = A_{\rm N}/A_{\rm T}$ , while SSB-AM is determined by the sideband-to-carrier ratio  $μ = A_{\rm N}/(2 · A_{\rm T})$ .
* Der frequenzunabhängige Kanalübertragungsfaktor  $α_{\rm K}$  wird durch die Konstante  $K$  ausgeglichen, so dass im rauschfreien Fall  $(N_0 = 0)$  das Sinkensignal  $v(t)$  mit dem Quellensignal  $q(t)$  übereinstimmt.
+
* The frequency-independent channel transmission factor  $α_{\rm K}$  is balanced by the constant  $K$ , so that in the noise-free case  $(N_0 = 0)$ , the sink signal  $v(t)$  matches the source signal  $q(t)$ .
* Das Sinken–SNR kann somit wie folgt angegeben werden  $(T_0$ gibt hierbei die Periodendauer des Quellensignals an$)$:
+
* The sink SNR can thus be given as follows $(where T_0$ indicates the period of the source signal$)$:
 
:$$ \rho_{v } = \frac{P_{q}}{P_{\varepsilon }}\hspace{0.5cm}{\rm mit}\hspace{0.5cm} P_{q} = \frac{1}{T_{\rm 0}}\cdot\int_{0}^{ T_{\rm 0}} {q^2(t)}\hspace{0.1cm}{\rm d}t, \hspace{0.5cm}P_{\varepsilon} = \int_{-B_{\rm NF}}^{ +B_{\rm NF}} \hspace{-0.1cm}{\it \Phi_{\varepsilon}}(f)\hspace{0.1cm}{\rm d}f\hspace{0.05cm}.$$
 
:$$ \rho_{v } = \frac{P_{q}}{P_{\varepsilon }}\hspace{0.5cm}{\rm mit}\hspace{0.5cm} P_{q} = \frac{1}{T_{\rm 0}}\cdot\int_{0}^{ T_{\rm 0}} {q^2(t)}\hspace{0.1cm}{\rm d}t, \hspace{0.5cm}P_{\varepsilon} = \int_{-B_{\rm NF}}^{ +B_{\rm NF}} \hspace{-0.1cm}{\it \Phi_{\varepsilon}}(f)\hspace{0.1cm}{\rm d}f\hspace{0.05cm}.$$
  
Line 27: Line 27:
  
  
''Hinweise:''  
+
''Hints:''  
*Die Aufgabe gehört zum  Kapitel  [[Modulation_Methods/Einseitenbandmodulation|Einseitenbandmodulation]].
+
*This exercise belongs to the chapter  [[Modulation_Methods/Single-Sideband_Modulation|Single-sideband Modulation]].
*Bezug genommen wird insbesondere auf die Seite   [[Modulation_Methods/Einseitenbandmodulation#Seitenband.E2.80.93zu.E2.80.93Tr.C3.A4ger.E2.80.93Verh.C3.A4ltnis|Seitenband-zu-Träger-Verhältnis]].
+
*Particular reference is made to the page   [[Modulation_Methods/Single-Sideband_Modulation#Sideband-to-carrier_ratio|Sideband-to-carrier ratio].
*Die Ergebnisse für die ZSB–AM finden Sie auf der Seite  [[Modulation_Methods/Synchrondemodulation#Sinken-SNR_und_Leistungskenngr.C3.B6.C3.9Fe|Sinken-SNR und Leistungskenngröße]].
+
*The results for DSB–AM can be found on the page[[Modulation_Methods/Synchronous_Demodulation#Sink_SNR_and_the_performance_parameter|Sink SNR and the performance parameter]].
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>

Revision as of 17:46, 22 December 2021

Shared block diagram for DSB-AM and SSB-AM

Now the influence of noise on the sink-to-noise ratio  $10 · \lg ρ_v$  for both   DSB–AM–  and  SSB–AM transmission will be compared.   The illustration shows the underlying block diagram.


The differences between the two system variants are highlighted in red on the image, namely the modulator  (DSB or SSB)  as well as the dimensionless constant

$$ K = \left\{ \begin{array}{c} 2/\alpha_{\rm K} \\ 4/\alpha_{\rm K} \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{bei}} \\ {\rm{bei}} \\ \end{array}\begin{array}{*{20}c} {\rm ZSB} \hspace{0.05cm}, \\ {\rm ESB} \hspace{0.05cm} \\ \end{array}$$

of the receiver-side carrier signal  $z_{\rm E}(t) = K · \cos(ω_{\rm T} · t)$, which is assumed to be frequency and phase cynchronous with the carrier signal  $z(t)$  at the transmitter.


The system parameters captured by the shared performance parameter are labelled in green:

$$\xi = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}$$


Further consider:

  • The cosine signal  $q(t)$  with frequency  $B_{\rm NF}$  stands for a source signal with bandwidth  $B_{\rm NF}$ composed of multiple frequencies.
  • DSB–AM with carrier is parameterized by a modulation depth of  $m = A_{\rm N}/A_{\rm T}$ , while SSB-AM is determined by the sideband-to-carrier ratio  $μ = A_{\rm N}/(2 · A_{\rm T})$ .
  • The frequency-independent channel transmission factor  $α_{\rm K}$  is balanced by the constant  $K$ , so that in the noise-free case  $(N_0 = 0)$ , the sink signal  $v(t)$  matches the source signal  $q(t)$ .
  • The sink SNR can thus be given as follows $(where T_0$ indicates the period of the source signal$)$:
$$ \rho_{v } = \frac{P_{q}}{P_{\varepsilon }}\hspace{0.5cm}{\rm mit}\hspace{0.5cm} P_{q} = \frac{1}{T_{\rm 0}}\cdot\int_{0}^{ T_{\rm 0}} {q^2(t)}\hspace{0.1cm}{\rm d}t, \hspace{0.5cm}P_{\varepsilon} = \int_{-B_{\rm NF}}^{ +B_{\rm NF}} \hspace{-0.1cm}{\it \Phi_{\varepsilon}}(f)\hspace{0.1cm}{\rm d}f\hspace{0.05cm}.$$



Hints:


Questions

1

Welche Demodulation wird hier betrachtet?

Synchrondemodulation.
Hüllkurvendemodulation.

2

Welcher Zusammenhang besteht zwischen den Größen  $ρ_v$  und  $ξ$  bei der  ZSB–AM ohne Träger  $(m → ∞)$?

Es gilt  $ρ_v = 2 · ξ$.
Es gilt  $ρ_v = ξ$.
Es gilt  $ρ_v = ξ/2$.

3

Welcher Zusammenhang besteht zwischen  $ρ_v$  und  $ξ$  bei der  ESB–AM ohne Träger  $(μ → ∞)$?

Es gilt  $ρ_v = 2 · ξ$.
Es gilt  $ρ_v = ξ$.
Es gilt  $ρ_v = ξ/2$.

4

Es gelte  $ξ = 10^4$.  Berechnen Sie den Sinken–Störabstand der  ZSB–AM ohne Träger  für den Modulationsgrad  $m = 0.5$  bzw.  $m = 1$.

$m = 0.5\text{:} \ \ 10 · \lg \ ρ_v \ = \ $

$\ \rm dB$
$m = 1.0\text{:} \ \ 10 · \lg \ ρ_v \ = \ $

$\ \rm dB$

5

Es gelte weiter  $ξ = 10^4$.  Berechnen Sie den Sinken–Störabstand der  ESB–AM  für den Parameter  $μ = 0.354$  bzw.  $μ = 0.707$.

$μ = 0.354\text{:} \ \ \ 10 · \lg \ ρ_v \ = \ $

$\ \rm dB$
$μ = 0.707\text{:} \ \ \ 10 · \lg \ ρ_v \ = \ $

$\ \rm dB$


Musterlösung

(1)  Es handelt sich um einen  Synchrondemodulator.  Richtig ist also der Lösungsvorschlag 1.


(2)  Richtig ist der Lösungsvorschlag 2:

  • Bei ZSB–AM ohne Träger gilt  $P_{\rm S} = P_q/2$.  Dies ist auch gleichzeitig die Leistung des Nutzanteils des Sinkensignals  $v(t)$.
  • Das Leistungsdichtespektrum  ${\it Φ}_ε(f)$  des Rauschanteils von  $v(t)$  ergibt sich aus der Faltung:
Rauschleistungsdichte bei ZSB-AM
$${\it \Phi}_\varepsilon(f) = {\it \Phi}_{z{\rm E} }(f) \star {\it \Phi}_n (f) = \frac{1}{\alpha_{\rm K}^2} \cdot \big[\delta(f - f_{\rm T}) + \delta(f + f_{\rm T}) \big]\star {\it \Phi}_n (f) \hspace{0.05cm}.$$
  • Der Ausdruck  $\big[$ ... $\big]$  beschreibt das Leistungsdichtespektrum eines Cosinussignals mit der Signalamplitude  $K = 2$.
  • Mit  $1/α_K^2$  wird die Korrektur der Kanaldämpfung berücksichtigt.
  • Unter Berücksichtigung von  ${\it \Phi}_n(f) = N_0/2$  ergibt sich somit:
$${\it \Phi}_\varepsilon(f) = \frac{N_0}{\alpha_{\rm K}^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} P_\varepsilon = \int_{-B_{\rm NF}}^{+B_{\rm NF}} {{\it \Phi}_\varepsilon(f) }\hspace{0.1cm}{\rm d}f = \frac{2 \cdot N_0 \cdot B_{\rm NF}}{\alpha_{\rm K}^2}\hspace{0.05cm}.$$
  • Daraus folgt für das Signal-zu-Rausch-Leistungsverhältnis (SNR):
$$\rho_{v } = \frac{P_{q}}{P_{\varepsilon }} = \frac{2 \cdot P_{\rm S}}{2 \cdot N_0 \cdot B_{\rm NF}/\alpha_{\rm K}^2} = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}\hspace{0.15cm}\underline { = \xi} \hspace{0.05cm}.$$


Rauschleistungsdichte bei  OSB-AM

(3) Richtig ist der Lösungsvorschlag 2:

  • Bei der ESB gilt im Gegensatz zur ZSB  $P_S = P_q/4$  sowie
$${\it \Phi}_\varepsilon(f) = {\it \Phi}_{z{\rm E} }(f) \star {\it \Phi}_n (f) = \frac{4}{\alpha_{\rm K}^2} \cdot \big[\delta(f - f_{\rm T}) + \delta(f + f_{\rm T}) \big]\star {\it \Phi}_n (f) \hspace{0.05cm}.$$
  • Unter Berücksichtigung von  $B_{\rm HF} = B_{\rm NF}$  (siehe nebenstehende Skizze für die OSB–Modulation) erhält man nun:
$${\it \Phi}_\varepsilon(f) = \frac{2 \cdot N_0}{\alpha_{\rm K}^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} P_\varepsilon = \frac{4 \cdot N_0 \cdot B_{\rm NF}}{\alpha_{\rm K}^2}\hspace{0.05cm}.$$
  • Das bedeutet:  Verzichtet man auf die Übertragung des Trägers, so zeigt die Einseitenbandmodulation das gleiche Rauschverhalten wie die ZSB–AM.


(4)  Ausgehend vom cosinusförmigen Träger mit der Amplitude  $A_{\rm T}$  und dem ebenfalls cosinusförmigen Nachrichtensignal  $q(t)$  erhält man bei ZSB–AM mit Träger:

$$ s(t) = \big (q(t) + A_{\rm T}\big ) \cdot \cos( \omega_{\rm T} \cdot t) = A_{\rm T} \cdot \cos( \omega_{\rm T} \cdot t) + \frac{A_{\rm N}}{2}\cdot \cos\big(( \omega_{\rm T}+ \omega_{\rm N}) \cdot t \big)+ \frac{A_{\rm N}}{2}\cdot \cos\big(( \omega_{\rm T}- \omega_{\rm N}) \cdot t\big)\hspace{0.05cm}.$$
  • Die Sendeleistung ergibt sich somit zu
$$ P_{\rm S}= \frac{A_{\rm T}^2}{2} + 2 \cdot \frac{(A_{\rm N}/2)^2}{2} = \frac{A_{\rm T}^2}{2} + \frac{A_{\rm N}^2}{4} \hspace{0.05cm}.$$
  • Unter Berücksichtigung von  $P_q = A_{\rm N}^2/2$  und  $m = A_{\rm N}/A_{\rm T}$  kann hierfür auch geschrieben werden:
$$P_{\rm S}= \frac{A_{\rm N}^2}{4} \cdot \left[ 1 + \frac{2 \cdot A_{\rm T}^2}{A_{\rm N}^2}\right] = \frac{P_q}{2} \cdot \left[ 1 + {2 }/{m^2}\right]\hspace{0.05cm}.$$
  • Mit der Rauschleistung  $P_ε$  gemäß der Teilaufgabe  (2)  erhält man somit:
$$\rho_{v } = \frac{P_{q}}{P_{\varepsilon }} = \frac{2 \cdot P_{\rm S}\cdot (1 + 2/m^2)}{2 \cdot N_0 \cdot B_{\rm NF}/\alpha_{\rm K}^2} = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}} \cdot \frac{1}{1 +{2 }/{m^2}} \hspace{0.05cm}.$$
  • Und in logarithmischer Darstellung:
$$ 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } = 10 \cdot {\rm lg} \hspace{0.15cm}\xi - 10 \cdot {\rm lg} \hspace{0.15cm}\left[{1 +{2 }/{m^2}}\right] \hspace{0.05cm}.$$
$$\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \ (m = 0.5) = 40 \,{\rm dB} - 10 \cdot {\rm lg} (9) \hspace{0.15cm}\underline {= 30.46\, {\rm dB}}$$
$$\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \ (m = 1.0) = 40 \,{\rm dB} - 10 \cdot {\rm lg} (3) \hspace{0.15cm}\underline {= 35.23\, {\rm dB} \hspace{0.05cm}}.$$


(5)  Bei der ESB–AM gibt es nur ein Seitenband.

  • Deshalb gilt unter Berücksichtigung des Seitenband–zu–Träger–Verhältnisses  $μ = A_{\rm N}/(2A_{\rm T})$:
$$ P_{\rm S}= \frac{A_{\rm T}^2}{2} + \frac{(A_{\rm N}/2)^2}{2} = {A_{\rm N}^2}/{8} \cdot \big[ 1 + {4 \cdot A_{\rm T}^2}/{A_{\rm N}^2}\big] = {P_q}/{4} \cdot \big[ 1 + {1 }/{\mu^2}\big] \hspace{0.05cm}.$$
  • Somit erhält man mit der Rauschleistung entsprechend der Teilaufgabe  (3):
$$\rho_{v } = \frac{P_{q}}{P_{\varepsilon }} = \frac{4 \cdot P_{\rm S}\cdot (1 + 1/\mu^2)}{4 \cdot N_0 \cdot B_{\rm NF}/\alpha_{\rm K}^2} = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}} \cdot \frac{1}{1 +{1 }/{\mu^2}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } = 10 \cdot {\rm lg} \hspace{0.15cm}\xi - 10 \cdot {\rm lg} \hspace{0.15cm}\big[{1 +{1 }/{\mu^2}}\big] \hspace{0.05cm}.$$
  • Man erhält also bei der ESB–AM das gleiche Ergebnis wie bei einer ZSB–AM mit dem Modulationsgrad  $m = \sqrt{2} · μ$.
  • Daraus folgt weiter:
$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \hspace{0.15cm}({\rm ESB,} \hspace{0.1cm}\mu = {0.5}/{\sqrt{2}}) = 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \hspace{0.15cm}({\rm ZSB,} \hspace{0.1cm}m=0.5) \hspace{0.15cm}\underline {=30.46\,{\rm dB}},$$
$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \hspace{0.15cm}({\rm ESB,} \hspace{0.1cm}\mu = {1.0}/{\sqrt{2}}) = 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \hspace{0.15cm}({\rm ZSB,} \hspace{0.1cm}m=1.0) \hspace{0.15cm}\underline {=35.23\,{\rm dB}}\hspace{0.05cm}.$$