Difference between revisions of "Aufgaben:Exercise 2.10Z: Noise with DSB-AM and SSB-AM"

From LNTwww
m
Line 69: Line 69:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Es handelt sich um einen&nbsp; <u>Synchrondemodulator</u>.&nbsp; Richtig ist also der <u>Lösungsvorschlag 1</u>.
+
'''(1)'''&nbsp; We are dealing with a &nbsp; <u>synchronous demodulator</u>.&nbsp; <u>Answer 1</u> is correct.
  
  
  
'''(2)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:
+
'''(2)'''&nbsp; <u>Answer 2</u> is correct:
*Bei ZSB–AM ohne Träger gilt&nbsp; $P_{\rm S} = P_q/2$.&nbsp; Dies ist auch gleichzeitig die Leistung des Nutzanteils des Sinkensignals&nbsp; $v(t)$.  
+
*For DSB–AM without a carrier, &nbsp; $P_{\rm S} = P_q/2$.&nbsp; This is simultaneously the power of the useful component of the sink signal&nbsp; $v(t)$.  
*Das Leistungsdichtespektrum&nbsp; ${\it Φ}_ε(f)$&nbsp; des Rauschanteils von&nbsp; $v(t)$&nbsp; ergibt sich aus der Faltung:
+
*The power density spectrum &nbsp; ${\it Φ}_ε(f)$&nbsp; of the noise component of &nbsp; $v(t)$&nbsp; results from the convolution :
[[File:P_ID1048__Mod_Z_2_9_b.png|right|frame|Rauschleistungsdichte bei ZSB-AM]]
+
[[File:P_ID1048__Mod_Z_2_9_b.png|right|frame|Noise power density in DSB-AM]]
 
:$${\it \Phi}_\varepsilon(f) = {\it \Phi}_{z{\rm E} }(f) \star {\it \Phi}_n (f) = \frac{1}{\alpha_{\rm K}^2} \cdot \big[\delta(f - f_{\rm T}) + \delta(f + f_{\rm T}) \big]\star {\it \Phi}_n (f) \hspace{0.05cm}.$$
 
:$${\it \Phi}_\varepsilon(f) = {\it \Phi}_{z{\rm E} }(f) \star {\it \Phi}_n (f) = \frac{1}{\alpha_{\rm K}^2} \cdot \big[\delta(f - f_{\rm T}) + \delta(f + f_{\rm T}) \big]\star {\it \Phi}_n (f) \hspace{0.05cm}.$$
*Der Ausdruck&nbsp; $\big[$ ... $\big]$&nbsp; beschreibt das Leistungsdichtespektrum eines Cosinussignals mit der Signalamplitude&nbsp; $K = 2$.  
+
*The expression&nbsp; $\big[$ ... $\big]$&nbsp; describes the power density spectrum of a cosine signal with the signal amplitude &nbsp; $K = 2$.  
*Mit&nbsp; $1/α_K^2$&nbsp; wird die Korrektur der Kanaldämpfung berücksichtigt.  
+
*The correction of channel damping is considered with &nbsp; $1/α_K^2$&nbsp;.  
*Unter Berücksichtigung von&nbsp; ${\it \Phi}_n(f) = N_0/2$&nbsp; ergibt sich somit:
+
*Thus, taking  &nbsp; ${\it \Phi}_n(f) = N_0/2$&nbsp; into account, we get:
 
:$${\it \Phi}_\varepsilon(f) = \frac{N_0}{\alpha_{\rm K}^2}  
 
:$${\it \Phi}_\varepsilon(f) = \frac{N_0}{\alpha_{\rm K}^2}  
 
  \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm} P_\varepsilon = \int_{-B_{\rm NF}}^{+B_{\rm NF}} {{\it \Phi}_\varepsilon(f) }\hspace{0.1cm}{\rm d}f = \frac{2 \cdot N_0 \cdot B_{\rm NF}}{\alpha_{\rm K}^2}\hspace{0.05cm}.$$
 
  \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm} P_\varepsilon = \int_{-B_{\rm NF}}^{+B_{\rm NF}} {{\it \Phi}_\varepsilon(f) }\hspace{0.1cm}{\rm d}f = \frac{2 \cdot N_0 \cdot B_{\rm NF}}{\alpha_{\rm K}^2}\hspace{0.05cm}.$$
*Daraus folgt für das Signal-zu-Rausch-Leistungsverhältnis (SNR):
+
*From this, it follows for the the signal-to-noise power ratio (SNR):
 
:$$\rho_{v } = \frac{P_{q}}{P_{\varepsilon }} = \frac{2 \cdot P_{\rm S}}{2 \cdot N_0 \cdot B_{\rm NF}/\alpha_{\rm K}^2} = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}\hspace{0.15cm}\underline { = \xi} \hspace{0.05cm}.$$
 
:$$\rho_{v } = \frac{P_{q}}{P_{\varepsilon }} = \frac{2 \cdot P_{\rm S}}{2 \cdot N_0 \cdot B_{\rm NF}/\alpha_{\rm K}^2} = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}\hspace{0.15cm}\underline { = \xi} \hspace{0.05cm}.$$
  
  
  
[[File:P_ID1049__Mod_Z_2_9_c.png|right|frame|Rauschleistungsdichte bei&nbsp; OSB-AM]]
+
[[File:P_ID1049__Mod_Z_2_9_c.png|right|frame|Noise power density in&nbsp; USB-AM]]
'''(3)'''&nbsp;Richtig ist der <u>Lösungsvorschlag 2</u>:
+
'''(3)'''&nbsp; <u>Answer 2</u> is correct:
*Bei der ESB gilt im Gegensatz zur ZSB&nbsp;  $P_S = P_q/4$&nbsp; sowie
+
*In contrast to DSB, &nbsp;  $P_S = P_q/4$&nbsp; holds for SSB, as well as
 
:$${\it \Phi}_\varepsilon(f) = {\it \Phi}_{z{\rm E} }(f) \star {\it \Phi}_n (f) = \frac{4}{\alpha_{\rm K}^2} \cdot \big[\delta(f - f_{\rm T}) + \delta(f + f_{\rm T}) \big]\star {\it \Phi}_n (f) \hspace{0.05cm}.$$
 
:$${\it \Phi}_\varepsilon(f) = {\it \Phi}_{z{\rm E} }(f) \star {\it \Phi}_n (f) = \frac{4}{\alpha_{\rm K}^2} \cdot \big[\delta(f - f_{\rm T}) + \delta(f + f_{\rm T}) \big]\star {\it \Phi}_n (f) \hspace{0.05cm}.$$
*Unter Berücksichtigung von&nbsp; $B_{\rm HF} = B_{\rm NF}$&nbsp; (siehe nebenstehende Skizze für die OSB–Modulation) erhält man nun:
+
*Taking &nbsp; $B_{\rm HF} = B_{\rm NF}$&nbsp; into account (see adjacent sketch for USB modulation), we now get:
 
:$${\it \Phi}_\varepsilon(f) = \frac{2 \cdot N_0}{\alpha_{\rm K}^2} \hspace{0.3cm}  \Rightarrow \hspace{0.3cm} P_\varepsilon = \frac{4 \cdot N_0 \cdot B_{\rm NF}}{\alpha_{\rm K}^2}\hspace{0.05cm}.$$
 
:$${\it \Phi}_\varepsilon(f) = \frac{2 \cdot N_0}{\alpha_{\rm K}^2} \hspace{0.3cm}  \Rightarrow \hspace{0.3cm} P_\varepsilon = \frac{4 \cdot N_0 \cdot B_{\rm NF}}{\alpha_{\rm K}^2}\hspace{0.05cm}.$$
  
*Das bedeutet:&nbsp; Verzichtet man auf die Übertragung des Trägers, so zeigt die Einseitenbandmodulation das gleiche Rauschverhalten wie die ZSB–AM.
+
*This means:&nbsp; when the carrier is not transmitted, single-sideband modulation demonstrates the same noise behaviour as DSB-AM.
  
  
  
'''(4)'''&nbsp; Ausgehend vom cosinusförmigen Träger mit der Amplitude&nbsp; $A_{\rm T}$&nbsp; und dem ebenfalls cosinusförmigen Nachrichtensignal&nbsp; $q(t)$&nbsp; erhält man bei ZSB–AM mit Träger:
+
'''(4)'''&nbsp; Assuming a cosine carrier with amplitude &nbsp; $A_{\rm T}$&nbsp; and an similarly cosine message signal &nbsp; $q(t)$&nbsp;, for DSB with carrier, we get:
 
:$$ s(t)  =  \big (q(t) + A_{\rm T}\big ) \cdot \cos( \omega_{\rm T} \cdot t)
 
:$$ s(t)  =  \big (q(t) + A_{\rm T}\big ) \cdot \cos( \omega_{\rm T} \cdot t)
 
  =  A_{\rm T} \cdot \cos( \omega_{\rm T} \cdot t) + \frac{A_{\rm N}}{2}\cdot \cos\big(( \omega_{\rm T}+ \omega_{\rm N}) \cdot t \big)+ \frac{A_{\rm N}}{2}\cdot \cos\big(( \omega_{\rm T}- \omega_{\rm N}) \cdot t\big)\hspace{0.05cm}.$$
 
  =  A_{\rm T} \cdot \cos( \omega_{\rm T} \cdot t) + \frac{A_{\rm N}}{2}\cdot \cos\big(( \omega_{\rm T}+ \omega_{\rm N}) \cdot t \big)+ \frac{A_{\rm N}}{2}\cdot \cos\big(( \omega_{\rm T}- \omega_{\rm N}) \cdot t\big)\hspace{0.05cm}.$$
*Die Sendeleistung ergibt sich somit zu
+
*The transmit power is thus given by
 
:$$ P_{\rm S}= \frac{A_{\rm T}^2}{2} + 2 \cdot \frac{(A_{\rm N}/2)^2}{2} = \frac{A_{\rm T}^2}{2} + \frac{A_{\rm N}^2}{4} \hspace{0.05cm}.$$
 
:$$ P_{\rm S}= \frac{A_{\rm T}^2}{2} + 2 \cdot \frac{(A_{\rm N}/2)^2}{2} = \frac{A_{\rm T}^2}{2} + \frac{A_{\rm N}^2}{4} \hspace{0.05cm}.$$
*Unter Berücksichtigung von&nbsp; $P_q = A_{\rm N}^2/2$&nbsp; und&nbsp; $m = A_{\rm N}/A_{\rm T}$&nbsp; kann hierfür auch geschrieben werden:
+
*Taking &nbsp; $P_q = A_{\rm N}^2/2$&nbsp; and&nbsp; $m = A_{\rm N}/A_{\rm T}$&nbsp; into account, this can also be written as:
 
:$$P_{\rm S}= \frac{A_{\rm N}^2}{4} \cdot \left[ 1 + \frac{2 \cdot A_{\rm T}^2}{A_{\rm N}^2}\right] = \frac{P_q}{2} \cdot \left[ 1 + {2 }/{m^2}\right]\hspace{0.05cm}.$$
 
:$$P_{\rm S}= \frac{A_{\rm N}^2}{4} \cdot \left[ 1 + \frac{2 \cdot A_{\rm T}^2}{A_{\rm N}^2}\right] = \frac{P_q}{2} \cdot \left[ 1 + {2 }/{m^2}\right]\hspace{0.05cm}.$$
*Mit der Rauschleistung&nbsp; $P_ε$&nbsp; gemäß der Teilaufgabe&nbsp; '''(2)'''&nbsp; erhält man somit:
+
*With a noise power &nbsp; $P_ε$&nbsp; according to subtask&nbsp; '''(2)'''&nbsp; we thus obtain:
 
:$$\rho_{v } = \frac{P_{q}}{P_{\varepsilon }} = \frac{2 \cdot P_{\rm S}\cdot (1 + 2/m^2)}{2 \cdot N_0 \cdot B_{\rm NF}/\alpha_{\rm K}^2} = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}} \cdot \frac{1}{1 +{2 }/{m^2}} \hspace{0.05cm}.$$
 
:$$\rho_{v } = \frac{P_{q}}{P_{\varepsilon }} = \frac{2 \cdot P_{\rm S}\cdot (1 + 2/m^2)}{2 \cdot N_0 \cdot B_{\rm NF}/\alpha_{\rm K}^2} = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}} \cdot \frac{1}{1 +{2 }/{m^2}} \hspace{0.05cm}.$$
*Und in logarithmischer Darstellung:
+
*And in logarithmic representation:
 
:$$ 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } = 10 \cdot {\rm lg} \hspace{0.15cm}\xi - 10 \cdot {\rm lg} \hspace{0.15cm}\left[{1 +{2 }/{m^2}}\right] \hspace{0.05cm}.$$
 
:$$ 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } = 10 \cdot {\rm lg} \hspace{0.15cm}\xi - 10 \cdot {\rm lg} \hspace{0.15cm}\left[{1 +{2 }/{m^2}}\right] \hspace{0.05cm}.$$
 
:$$\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \ (m = 0.5)  =  40 \,{\rm dB} - 10 \cdot {\rm lg} (9) \hspace{0.15cm}\underline {= 30.46\, {\rm dB}}$$  
 
:$$\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \ (m = 0.5)  =  40 \,{\rm dB} - 10 \cdot {\rm lg} (9) \hspace{0.15cm}\underline {= 30.46\, {\rm dB}}$$  
Line 115: Line 115:
  
  
'''(5)'''&nbsp; Bei der ESB–AM gibt es nur ein Seitenband.
+
'''(5)'''&nbsp; In SSB–AM there is only one sideband.
*Deshalb gilt unter Berücksichtigung des Seitenband–zu–Träger–Verhältnisses&nbsp; $μ = A_{\rm N}/(2A_{\rm T})$:
+
*Therefore, considering the sideband-to-carrier ratio &nbsp; $μ = A_{\rm N}/(2A_{\rm T})$ gives:
 
:$$ P_{\rm S}= \frac{A_{\rm T}^2}{2} + \frac{(A_{\rm N}/2)^2}{2} = {A_{\rm N}^2}/{8} \cdot \big[ 1 + {4 \cdot A_{\rm T}^2}/{A_{\rm N}^2}\big] = {P_q}/{4} \cdot \big[ 1 + {1 }/{\mu^2}\big] \hspace{0.05cm}.$$
 
:$$ P_{\rm S}= \frac{A_{\rm T}^2}{2} + \frac{(A_{\rm N}/2)^2}{2} = {A_{\rm N}^2}/{8} \cdot \big[ 1 + {4 \cdot A_{\rm T}^2}/{A_{\rm N}^2}\big] = {P_q}/{4} \cdot \big[ 1 + {1 }/{\mu^2}\big] \hspace{0.05cm}.$$
*Somit erhält man mit der Rauschleistung entsprechend der Teilaufgabe&nbsp; '''(3)''':
+
*Thus, with the noise power from subtask&nbsp; '''(3)''' we obtain:
 
:$$\rho_{v } = \frac{P_{q}}{P_{\varepsilon }} = \frac{4 \cdot P_{\rm S}\cdot (1 + 1/\mu^2)}{4 \cdot N_0 \cdot B_{\rm NF}/\alpha_{\rm K}^2} = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}} \cdot \frac{1}{1 +{1 }/{\mu^2}}\hspace{0.3cm}
 
:$$\rho_{v } = \frac{P_{q}}{P_{\varepsilon }} = \frac{4 \cdot P_{\rm S}\cdot (1 + 1/\mu^2)}{4 \cdot N_0 \cdot B_{\rm NF}/\alpha_{\rm K}^2} = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}} \cdot \frac{1}{1 +{1 }/{\mu^2}}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } = 10 \cdot {\rm lg} \hspace{0.15cm}\xi - 10 \cdot {\rm lg} \hspace{0.15cm}\big[{1 +{1 }/{\mu^2}}\big] \hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } = 10 \cdot {\rm lg} \hspace{0.15cm}\xi - 10 \cdot {\rm lg} \hspace{0.15cm}\big[{1 +{1 }/{\mu^2}}\big] \hspace{0.05cm}.$$
*Man erhält also bei der ESB–AM das gleiche Ergebnis wie bei einer ZSB–AM mit dem Modulationsgrad&nbsp; $m = \sqrt{2} · μ$.  
+
*So we get the same result with SSB-AM as in DSB-Am with a modulation depth of&nbsp; $m = \sqrt{2} · μ$.  
*Daraus folgt weiter:
+
*From this, it follows further:
 
:$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \hspace{0.15cm}({\rm ESB,} \hspace{0.1cm}\mu = {0.5}/{\sqrt{2}}) = 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \hspace{0.15cm}({\rm ZSB,} \hspace{0.1cm}m=0.5) \hspace{0.15cm}\underline {=30.46\,{\rm dB}},$$  
 
:$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \hspace{0.15cm}({\rm ESB,} \hspace{0.1cm}\mu = {0.5}/{\sqrt{2}}) = 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \hspace{0.15cm}({\rm ZSB,} \hspace{0.1cm}m=0.5) \hspace{0.15cm}\underline {=30.46\,{\rm dB}},$$  
 
:$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \hspace{0.15cm}({\rm ESB,} \hspace{0.1cm}\mu = {1.0}/{\sqrt{2}})  = 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \hspace{0.15cm}({\rm ZSB,} \hspace{0.1cm}m=1.0) \hspace{0.15cm}\underline {=35.23\,{\rm dB}}\hspace{0.05cm}.$$
 
:$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \hspace{0.15cm}({\rm ESB,} \hspace{0.1cm}\mu = {1.0}/{\sqrt{2}})  = 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \hspace{0.15cm}({\rm ZSB,} \hspace{0.1cm}m=1.0) \hspace{0.15cm}\underline {=35.23\,{\rm dB}}\hspace{0.05cm}.$$

Revision as of 18:09, 22 December 2021

Shared block diagram for DSB-AM and SSB-AM

Now the influence of noise on the sink-to-noise ratio  $10 · \lg ρ_v$  for both   DSB–AM  and  SSB–AM transmission will be compared.   The illustration shows the underlying block diagram.


The differences between the two system variants are highlighted in red on the image, namely the modulator  (DSB or SSB)  as well as the dimensionless constant

$$ K = \left\{ \begin{array}{c} 2/\alpha_{\rm K} \\ 4/\alpha_{\rm K} \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{bei}} \\ {\rm{bei}} \\ \end{array}\begin{array}{*{20}c} {\rm ZSB} \hspace{0.05cm}, \\ {\rm ESB} \hspace{0.05cm} \\ \end{array}$$

of the receiver-side carrier signal  $z_{\rm E}(t) = K · \cos(ω_{\rm T} · t)$, which is assumed to be frequency and phase synchronous with the carrier signal  $z(t)$  at the transmitter.


The system parameters captured by the shared performance parameter are labelled in green:

$$\xi = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}$$


Further note:

  • The cosine signal  $q(t)$  with frequency  $B_{\rm NF}$  stands for a source signal with bandwidth  $B_{\rm NF}$ composed of multiple frequencies.
  • DSB–AM with carrier is parameterized by a modulation depth of  $m = A_{\rm N}/A_{\rm T}$ , while SSB-AM is determined by the sideband-to-carrier ratio  $μ = A_{\rm N}/(2 · A_{\rm T})$ .
  • The frequency-independent channel transmission factor  $α_{\rm K}$  is balanced by the constant  $K$ , so that in the noise-free case  $(N_0 = 0)$ , the sink signal  $v(t)$  matches the source signal  $q(t)$ .
  • The sink SNR can thus be given as follows $(T_0$ indicates the period of the source signal$)$:
$$ \rho_{v } = \frac{P_{q}}{P_{\varepsilon }}\hspace{0.5cm}{\rm mit}\hspace{0.5cm} P_{q} = \frac{1}{T_{\rm 0}}\cdot\int_{0}^{ T_{\rm 0}} {q^2(t)}\hspace{0.1cm}{\rm d}t, \hspace{0.5cm}P_{\varepsilon} = \int_{-B_{\rm NF}}^{ +B_{\rm NF}} \hspace{-0.1cm}{\it \Phi_{\varepsilon}}(f)\hspace{0.1cm}{\rm d}f\hspace{0.05cm}.$$



Hints:


Questions

1

Which kind of demodulation is considered here?

Synchronous demodulation.
Envelope demodulation.

2

Which relationship holds between the quantities  $ρ_v$  and  $ξ$  for  DSB–AM without a carrier  as $(m → ∞)$?

 $ρ_v = 2 · ξ$.
 $ρ_v = ξ$.
 $ρ_v = ξ/2$.

3

Which relationship holds between  $ρ_v$  and  $ξ$  for  SSB–AM without a carrier  as $(μ → ∞)$?

 $ρ_v = 2 · ξ$.
 $ρ_v = ξ$.
 $ρ_v = ξ/2$.

4

Let  $ξ = 10^4$.  Calculate the sink-to-noise ratio of   DSB–AM without a carrier  for modulation depths  $m = 0.5$  and  $m = 1$.

$m = 0.5\text{:} \ \ 10 · \lg \ ρ_v \ = \ $

$\ \rm dB$
$m = 1.0\text{:} \ \ 10 · \lg \ ρ_v \ = \ $

$\ \rm dB$

5

Further let  $ξ = 10^4$.  Calculate the sink-to-noise ratio of   SSB–AM  for the parameters  $μ = 0.354$  and  $μ = 0.707$.

$μ = 0.354\text{:} \ \ \ 10 · \lg \ ρ_v \ = \ $

$\ \rm dB$
$μ = 0.707\text{:} \ \ \ 10 · \lg \ ρ_v \ = \ $

$\ \rm dB$


Solution

(1)  We are dealing with a   synchronous demodulatorAnswer 1 is correct.


(2)  Answer 2 is correct:

  • For DSB–AM without a carrier,   $P_{\rm S} = P_q/2$.  This is simultaneously the power of the useful component of the sink signal  $v(t)$.
  • The power density spectrum   ${\it Φ}_ε(f)$  of the noise component of   $v(t)$  results from the convolution :
Noise power density in DSB-AM
$${\it \Phi}_\varepsilon(f) = {\it \Phi}_{z{\rm E} }(f) \star {\it \Phi}_n (f) = \frac{1}{\alpha_{\rm K}^2} \cdot \big[\delta(f - f_{\rm T}) + \delta(f + f_{\rm T}) \big]\star {\it \Phi}_n (f) \hspace{0.05cm}.$$
  • The expression  $\big[$ ... $\big]$  describes the power density spectrum of a cosine signal with the signal amplitude   $K = 2$.
  • The correction of channel damping is considered with   $1/α_K^2$ .
  • Thus, taking   ${\it \Phi}_n(f) = N_0/2$  into account, we get:
$${\it \Phi}_\varepsilon(f) = \frac{N_0}{\alpha_{\rm K}^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} P_\varepsilon = \int_{-B_{\rm NF}}^{+B_{\rm NF}} {{\it \Phi}_\varepsilon(f) }\hspace{0.1cm}{\rm d}f = \frac{2 \cdot N_0 \cdot B_{\rm NF}}{\alpha_{\rm K}^2}\hspace{0.05cm}.$$
  • From this, it follows for the the signal-to-noise power ratio (SNR):
$$\rho_{v } = \frac{P_{q}}{P_{\varepsilon }} = \frac{2 \cdot P_{\rm S}}{2 \cdot N_0 \cdot B_{\rm NF}/\alpha_{\rm K}^2} = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}\hspace{0.15cm}\underline { = \xi} \hspace{0.05cm}.$$


Noise power density in  USB-AM

(3)  Answer 2 is correct:

  • In contrast to DSB,   $P_S = P_q/4$  holds for SSB, as well as
$${\it \Phi}_\varepsilon(f) = {\it \Phi}_{z{\rm E} }(f) \star {\it \Phi}_n (f) = \frac{4}{\alpha_{\rm K}^2} \cdot \big[\delta(f - f_{\rm T}) + \delta(f + f_{\rm T}) \big]\star {\it \Phi}_n (f) \hspace{0.05cm}.$$
  • Taking   $B_{\rm HF} = B_{\rm NF}$  into account (see adjacent sketch for USB modulation), we now get:
$${\it \Phi}_\varepsilon(f) = \frac{2 \cdot N_0}{\alpha_{\rm K}^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} P_\varepsilon = \frac{4 \cdot N_0 \cdot B_{\rm NF}}{\alpha_{\rm K}^2}\hspace{0.05cm}.$$
  • This means:  when the carrier is not transmitted, single-sideband modulation demonstrates the same noise behaviour as DSB-AM.


(4)  Assuming a cosine carrier with amplitude   $A_{\rm T}$  and an similarly cosine message signal   $q(t)$ , for DSB with carrier, we get:

$$ s(t) = \big (q(t) + A_{\rm T}\big ) \cdot \cos( \omega_{\rm T} \cdot t) = A_{\rm T} \cdot \cos( \omega_{\rm T} \cdot t) + \frac{A_{\rm N}}{2}\cdot \cos\big(( \omega_{\rm T}+ \omega_{\rm N}) \cdot t \big)+ \frac{A_{\rm N}}{2}\cdot \cos\big(( \omega_{\rm T}- \omega_{\rm N}) \cdot t\big)\hspace{0.05cm}.$$
  • The transmit power is thus given by
$$ P_{\rm S}= \frac{A_{\rm T}^2}{2} + 2 \cdot \frac{(A_{\rm N}/2)^2}{2} = \frac{A_{\rm T}^2}{2} + \frac{A_{\rm N}^2}{4} \hspace{0.05cm}.$$
  • Taking   $P_q = A_{\rm N}^2/2$  and  $m = A_{\rm N}/A_{\rm T}$  into account, this can also be written as:
$$P_{\rm S}= \frac{A_{\rm N}^2}{4} \cdot \left[ 1 + \frac{2 \cdot A_{\rm T}^2}{A_{\rm N}^2}\right] = \frac{P_q}{2} \cdot \left[ 1 + {2 }/{m^2}\right]\hspace{0.05cm}.$$
  • With a noise power   $P_ε$  according to subtask  (2)  we thus obtain:
$$\rho_{v } = \frac{P_{q}}{P_{\varepsilon }} = \frac{2 \cdot P_{\rm S}\cdot (1 + 2/m^2)}{2 \cdot N_0 \cdot B_{\rm NF}/\alpha_{\rm K}^2} = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}} \cdot \frac{1}{1 +{2 }/{m^2}} \hspace{0.05cm}.$$
  • And in logarithmic representation:
$$ 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } = 10 \cdot {\rm lg} \hspace{0.15cm}\xi - 10 \cdot {\rm lg} \hspace{0.15cm}\left[{1 +{2 }/{m^2}}\right] \hspace{0.05cm}.$$
$$\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \ (m = 0.5) = 40 \,{\rm dB} - 10 \cdot {\rm lg} (9) \hspace{0.15cm}\underline {= 30.46\, {\rm dB}}$$
$$\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \ (m = 1.0) = 40 \,{\rm dB} - 10 \cdot {\rm lg} (3) \hspace{0.15cm}\underline {= 35.23\, {\rm dB} \hspace{0.05cm}}.$$


(5)  In SSB–AM there is only one sideband.

  • Therefore, considering the sideband-to-carrier ratio   $μ = A_{\rm N}/(2A_{\rm T})$ gives:
$$ P_{\rm S}= \frac{A_{\rm T}^2}{2} + \frac{(A_{\rm N}/2)^2}{2} = {A_{\rm N}^2}/{8} \cdot \big[ 1 + {4 \cdot A_{\rm T}^2}/{A_{\rm N}^2}\big] = {P_q}/{4} \cdot \big[ 1 + {1 }/{\mu^2}\big] \hspace{0.05cm}.$$
  • Thus, with the noise power from subtask  (3) we obtain:
$$\rho_{v } = \frac{P_{q}}{P_{\varepsilon }} = \frac{4 \cdot P_{\rm S}\cdot (1 + 1/\mu^2)}{4 \cdot N_0 \cdot B_{\rm NF}/\alpha_{\rm K}^2} = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}} \cdot \frac{1}{1 +{1 }/{\mu^2}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } = 10 \cdot {\rm lg} \hspace{0.15cm}\xi - 10 \cdot {\rm lg} \hspace{0.15cm}\big[{1 +{1 }/{\mu^2}}\big] \hspace{0.05cm}.$$
  • So we get the same result with SSB-AM as in DSB-Am with a modulation depth of  $m = \sqrt{2} · μ$.
  • From this, it follows further:
$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \hspace{0.15cm}({\rm ESB,} \hspace{0.1cm}\mu = {0.5}/{\sqrt{2}}) = 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \hspace{0.15cm}({\rm ZSB,} \hspace{0.1cm}m=0.5) \hspace{0.15cm}\underline {=30.46\,{\rm dB}},$$
$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \hspace{0.15cm}({\rm ESB,} \hspace{0.1cm}\mu = {1.0}/{\sqrt{2}}) = 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v } \hspace{0.15cm}({\rm ZSB,} \hspace{0.1cm}m=1.0) \hspace{0.15cm}\underline {=35.23\,{\rm dB}}\hspace{0.05cm}.$$