Difference between revisions of "Aufgaben:Exercise 2.11: Reed-Solomon Decoding according to "Erasures""

From LNTwww
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Reed–Solomon–Decodierung beim Auslöschungskanal}}
+
{{quiz-Header|Buchseite=Channel_Coding/Reed-Solomon_Decoding_for_the_Erasure_Channel}}
  
[[File:P_ID2542__KC_A_2_11_neu.png|right|frame|${\rm GF}(2^3)$, dargestellt als  Potenzen, Polynome und Koeffizientenvektoren]]
+
[[File:P_ID2542__KC_A_2_11_neu.png|right|frame|${\rm GF}(2^3)$, represented as powers, polynomials and coefficient vectors]]
Wir betrachten hier ein Codier– und Decodiersystem entsprechend der  [[Channel_Coding/Reed%E2%80%93Solomon%E2%80%93Decodierung_beim_Ausl%C3%B6schungskanal#Blockschaltbild_und_Voraussetzungen_zur_RS.E2.80.93Fehlererkennung| Grafik]]  im Theorieteil zu diesem Kapitel. Anzumerken ist:
+
We consider here an encoding  and decoding system corresponding to the  [[Channel_Coding/Reed-Solomon_Decoding_for_the_Erasure_Channel#Block_diagram_and_requirements_for_RS_fault_detection| "graph"]]  in the theory section for this chapter. To be noted:
* Der Reed–Solomon–Code ist durch die Generatormatrix  $\mathbf{G}$  und die Prüfmatrix  $\mathbf{H}$  vorgegeben, wobei alle Elemente aus dem Galoisfeld  $\rm GF(2^3) \ \backslash \ \{0\}$  stammen:
+
* The Reed–Solomon code is given by the generator matrix  $\mathbf{G}$  and the parity-check matrix  $\mathbf{H}$  where all elements are from the Galois field  $\rm GF(2^3) \ \backslash \ \{0\}$ :
 
:$${ \boldsymbol{\rm G}} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  
 
:$${ \boldsymbol{\rm G}} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  
 
\begin{pmatrix}
 
\begin{pmatrix}
Line 18: Line 18:
 
\end{pmatrix} \hspace{0.05cm}.$$
 
\end{pmatrix} \hspace{0.05cm}.$$
  
* Alle Codesymbole&nbsp; $c_i &#8712; \{0, \, 1, \, \alpha, \, \alpha^2, \, \alpha^3, \, \alpha^4, \, \alpha^5, \, \alpha^6\}$&nbsp; werden durch&nbsp; $m = 3$&nbsp; Bit  dargestellt und über den (in der Grafik) grün hinterlegten Auslöschungskanal&nbsp; $(m$&ndash;BEC$)$&nbsp; übertragen. Ein Codesymbol wird bereits dann als Auslöschung (<i>Erasure</i>&nbsp;)&nbsp; $\rm E$&nbsp; markiert, wenn eines der drei zugehörigen Bit unsicher ist.
+
* All code symbols&nbsp; $c_i &#8712; \{0, \, 1, \, \alpha, \, \alpha^2, \, \alpha^3, \, \alpha^4, \, \alpha^5, \, \alpha^6\}$&nbsp; are represented by&nbsp; $m = 3$&nbsp; bits and transmitted via the erasure channel (highlighted in green in the graphic)&nbsp; $(m$ BEC$)$&nbsp;. A code symbol is already marked as an erasure (<i>Erasure</i>&nbsp;)&nbsp; $\rm E$&nbsp; if one of the three associated bits is uncertain.
* Der <i>Codewortfinder</i>&nbsp; (CWF) hat die Aufgabe, aus dem teilweise ausgelöschten Empfangswort&nbsp; $\underline{y}$&nbsp; das regenerierte Codewort&nbsp; $\underline{z}$&nbsp; zu erzeugen. Dabei muss sichergestellt sein, dass das Ergebnis&nbsp; $\underline{z}$&nbsp; tatsächlich ein gültiges Reed&ndash;Solomon&ndash;Codewort ist.  
+
* The <i>code word finder</i>&nbsp; (CWF) has the exercise of generating the regenerated codeword&nbsp; $\underline{z}$&nbsp; from the partially erased received word&nbsp; $\underline{y}$&nbsp;. It must be ensured that the result&nbsp; $\underline{z}$&nbsp; is indeed a valid Reed&ndash;Solomon codeword.  
* Beinhaltet das Empfangswort&nbsp; $\underline{y}$&nbsp; zu viele Auslöschungen, so gibt der Decoder eine Meldung der Art "Symbol ist nicht decodierbar" aus. &nbsp;Es wird also nicht versucht, das Codewort zu schätzen. Wird&nbsp; $\underline{z}$&nbsp; ausgegeben, so ist dieses auch richtig:&nbsp; $\underline{z} = \underline{c}$.
+
* If the received word&nbsp; $\underline{y}$&nbsp; contains too many erasures, the decoder outputs a message of the type "symbol cannot be decoded". &nbsp;So no attempt is made to estimate the codeword. If&nbsp; $\underline{z}$&nbsp; is output, this is also correct:&nbsp; $\underline{z} = \underline{c}$.
* Das gesuchte Informationswert&nbsp; $\underline{v} = \underline{u}$&nbsp; ergibt sich durch die inverse Coderfunktion&nbsp; $\underline{v} = {\rm enc}^{-1}(\underline{z})$. Mit der Generatormatrix&nbsp; $\mathbf{G}$&nbsp; lässt sich diese wie folgt realisieren:
+
* The sought information value&nbsp; $\underline{v} = \underline{u}$&nbsp; results from the inverse coder function&nbsp; $\underline{v} = {\rm enc}^{-1}(\underline{z})$. With the generator matrix&nbsp; $\mathbf{G}$&nbsp; this can be realized as follows:
 
:$$\underline{c} = {\rm enc}(\underline{u}) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \underline{u} \cdot {\boldsymbol{\rm G}}
 
:$$\underline{c} = {\rm enc}(\underline{u}) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \underline{u} \cdot {\boldsymbol{\rm G}}
 
\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{z} = {\rm enc}(\underline{v})
 
\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{z} = {\rm enc}(\underline{v})
Line 34: Line 34:
  
  
''Hinweise:''
+
Hints:
* Die Aufgabe bezieht sich auf das Kapitel&nbsp; [[Channel_Coding/Reed%E2%80%93Solomon%E2%80%93Decodierung_beim_Ausl%C3%B6schungskanal| Reed&ndash;Solomon&ndash;Decodierung beim Auslöschungskanal]].
+
* This exercise refers to the chapter&nbsp; [[Channel_Coding/Reed-Solomon_Decoding_for_the_Erasure_Channel| "Reed&ndash;Solomon Decoding at the Erasure Channel"]].
* Hinsichtlich des <i>Codewortfinders</i> verweisen wir insbesondere auf die Seiten&nbsp; [[Channel_Coding/Reed%E2%80%93Solomon%E2%80%93Decodierung_beim_Ausl%C3%B6schungskanal#Vorgehensweise_am_Beispiel_des_RSC_.287.2C_3.2C_5.298| Vorgehensweise]]&nbsp; und&nbsp; [[Channel_Coding/Reed%E2%80%93Solomon%E2%80%93Decodierung_beim_Ausl%C3%B6schungskanal#L.C3.B6sung_der_Matrixgleichungen_am_Beispiel_des_RSC_.287.2C_3.2C_5.298| Lösung der Matrixgleichungen]].
+
* Regarding the <i>code word finder</i>, we refer in particular to the pages&nbsp; [[Channel_Coding/Reed-Solomon_Decoding_for_the_Erasure_Channel#Procedure_using_the_RSC_as_an_example_.287.2C_3.2C_5. 298| "procedure"]]&nbsp; and&nbsp; [[Channel_Coding/Reed-Solomon_Decoding_for_the_Erasure_Channel#Solution_of_the_matrix_equations_using_the_example_of_the_RSC_.287.2C_3.2C_5.298| "Solution of the matrix equations"]].
* Alle Berechnungen sind in&nbsp; $\rm GF(2^3)$&nbsp; durchzuführen. Die obere Grafik beschreibt deren&nbsp; $q = 8$&nbsp; Elemente in Potenz&ndash;, Polynom&ndash; und Koeffizientenvektordarstellung.
+
* All calculations are to be performed in&nbsp; $\rm GF(2^3)$&nbsp;. The upper graph describes their&nbsp; $q = 8$&nbsp; elements in power , polynomial and coefficient vector representation.
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Geben Sie die Codeparameter des vorliegenden Reed&ndash;Solomon&ndash;Codes an.
+
{Specify the code parameters of the present Reed&ndash;Solomon code.
 
|type="{}"}
 
|type="{}"}
 
$n \ = \ ${ 7 }
 
$n \ = \ ${ 7 }
Line 49: Line 49:
 
$d_{\rm min} \ = \ ${ 4 }
 
$d_{\rm min} \ = \ ${ 4 }
  
{Kann der Empfangsvektor&nbsp; $\underline{y} = (0, \, 0, \, 0,\, 0, \, 0, \, 0, \, {\rm E})$&nbsp; decodiert werden?
+
{Can the received vector&nbsp; $\underline{y} = (0, \, 0, \, 0,\, 0, \, 0, \, 0, \, {\rm E})$&nbsp; be decoded??
 
|type="()"}
 
|type="()"}
+ JA.
+
+ YES.
- NEIN.
+
- NO.
  
{Kann der Empfangsvektor&nbsp; $\underline{y} = (\rm E, \, E, \, 1, \, 1, \, 1, \, 1, \, 1)$&nbsp; decodiert werden?
+
{Can the received vector&nbsp; $\underline{y} = (\rm E, \, E, \, 1, \, 1, \, 1, \, 1, \, 1)$&nbsp; be decoded?
 
|type="()"}
 
|type="()"}
+ JA.
+
+ YES.
- NEIN.
+
- NO.
  
{Welches Ergebnis liefert die Decodierung von&nbsp; $\underline{y} = (\rm E, \, E, \, E, \, 0, \, 1, \, \alpha, \, 0)$?
+
{What is the result of decoding&nbsp; $\underline{y} = (\rm E, \, E, \, E, \, 0, \, 1, \, \alpha, \, 0)$?
 
|type="()"}
 
|type="()"}
 
- $z_0 = \alpha, \ z_1 = \alpha^3, \ z_2 = 0$.
 
- $z_0 = \alpha, \ z_1 = \alpha^3, \ z_2 = 0$.
 
+ $z_0 = \alpha, \ z_1 = \alpha^3, \ z_2 = \alpha^3$.
 
+ $z_0 = \alpha, \ z_1 = \alpha^3, \ z_2 = \alpha^3$.
 
- $z_0 = 1, \ z_1 = 0, \ z_2 = \alpha^3$.
 
- $z_0 = 1, \ z_1 = 0, \ z_2 = \alpha^3$.
- Die Decodierung führt zu keinem Ergebnis.
+
- The decoding does not lead to any result.
  
{Welches Ergebnis liefert die Decodierung von&nbsp; $\underline{y} = (\rm E, \, E, \, E, \, 0, \, 1, \, \alpha, \, E)$?
+
{What is the result of decoding&nbsp; $\underline{y} = (\rm E, \, E, \, E, \, 0, \, 1, \, \alpha, \, E)$?
 
|type="()"}
 
|type="()"}
 
- $z_0 = \alpha, \ z_1 = \alpha^3, \ z_2 = 0, \ z_6 = 1$.
 
- $z_0 = \alpha, \ z_1 = \alpha^3, \ z_2 = 0, \ z_6 = 1$.
 
- $z_0 = \alpha, \ z_1 = \alpha^3, \ z_2 = \alpha^3, \ z_6 = 1$.
 
- $z_0 = \alpha, \ z_1 = \alpha^3, \ z_2 = \alpha^3, \ z_6 = 1$.
 
- $z_0 = 1, \ z_1 = 0, \ z_2 = \alpha^3, \ z_6 = 1$.
 
- $z_0 = 1, \ z_1 = 0, \ z_2 = \alpha^3, \ z_6 = 1$.
+ Die Decodierung führt zu keinem Ergebnis.
+
+ The decoding does not lead to any result.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Spaltenanzahl der Prüfmatrix $\mathbf{H}$ gibt die Codelänge an: $n \ \underline{= 7}$.  
+
'''(1)'''&nbsp; The number of columns of the parity-check matrix $\mathbf{H}$ indicates the code length: $n \ \underline{= 7}$.  
*Zum gleichen Ergebnis kommt man, wenn man von der Ordnung $q = 8$ des Galoisfeldes ausgeht. Bei den Reed&ndash;Solomon&ndash;Codes gilt nämlich $n = q - 1$.  
+
*The same result is obtained if we assume the order $q = 8$ of the Galois field. For the Reed&ndash;Solomon codes $n = q - 1$ is valid.  
*Die Zeilenanzahl der Prüfmatrix ist gleich $n - k = 3 \ \Rightarrow \ k \ \underline{= 4}$.  
+
*The number of rows of the parity-check matrix is equal to $n - k = 3 \ \Rightarrow \ k \ \underline{= 4}$.  
*Von allen Reed&ndash;Solomon&ndash;Codes wird die [[Channel_Coding/Definition_und_Eigenschaften_von_Reed%E2%80%93Solomon%E2%80%93Codes#Singleton.E2.80.93Schranke_und_minimale_Distanz| Singleton&ndash;Schranke]] erfüllt &nbsp; &#8658; &nbsp; $d_{\rm min} = n - k + 1 \ \underline{= 4}$.  
+
*Of all Reed&ndash;Solomon codes, the [[Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes#Singleton_bound_and_minimum_distance| "Singleton bound"]] is satisfied &nbsp; &#8658; &nbsp; $d_{\rm min} = n - k + 1 \ \underline{= 4}$.  
*Es handelt sich also um den Reed&ndash;Solomon&ndash;Code $(7, \, 4, \, 4)_8$.
+
*Thus, it is the Reed&ndash;Solomon code $(7, \, 4, \, 4)_8$.
  
  
  
'''(2)'''&nbsp; Eine Decodierung ist sicher möglich, so lange die Anzahl $e$ der Auslöschungen kleiner ist als die Minimaldistanz $d_{\rm min}$. Diese Bedingung ist hier erfüllt &nbsp;&#8658;&nbsp; <b><u>JA</u></b>.  
+
'''(2)'''&nbsp; Decoding is certainly possible as long as the number $e$ of extinctions is smaller than the minimum distance $d_{\rm min}$. This condition is fulfilled here &nbsp;&#8658;&nbsp; <b><u>YES</u></b>.  
*Nachdem bei allen RS&ndash;Codes das Nullwort zulässig ist und jedes andere Codewort mindestens vier Symbole ungleich "$0$" beinhaltet, ist bereits ohne Rechnung sicher, dass das Nullwort gesendet wurde.  
+
*Since the null word is allowed in all RS codes and every other codeword contains at least four symbols not equal to "$0$", it is already certain without calculation that the null word was sent.  
*Die formale Rechnung bestätigt dieses Ergebnis:
+
*The formal calculation confirms this result:
 
:$${ \boldsymbol{\rm H}}_{\rm K} \cdot \underline {z}_{\rm K}^{\rm T} =
 
:$${ \boldsymbol{\rm H}}_{\rm K} \cdot \underline {z}_{\rm K}^{\rm T} =
 
\begin{pmatrix}
 
\begin{pmatrix}
Line 106: Line 106:
  
  
'''(3)'''&nbsp; Auch hier ist&nbsp; $e = 2$&nbsp; kleiner als&nbsp; $d_{\rm min} = 4$ &nbsp; &#8658; &nbsp; <b><u>JA</u></b>.  
+
'''(3)'''&nbsp; Again&nbsp; $e = 2$&nbsp; is smaller than&nbsp; $d_{\rm min} = 4$ &nbsp; &#8658; &nbsp; <b><u>YES</u></b>.  
*Da auch $(1, \, 1, \, 1, \, 1, \, 1, \, 1, \, 1)$ ein gültiges Codewort ist, erwarten wir bei der formalen Überprüfung $z_0 = 1$ und $z_1 = 1$.
+
*Since $(1, \, 1, \, 1, \, 1, \, 1, \, 1, \, 1)$ is also a valid codeword, we expect $z_0 = 1$ und $z_1 = 1$ in the formal verification.
 
:$${ \boldsymbol{\rm H}}_{\rm K} \cdot \underline {z}_{\rm K}^{\rm T} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}
 
:$${ \boldsymbol{\rm H}}_{\rm K} \cdot \underline {z}_{\rm K}^{\rm T} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}
 
\begin{pmatrix}
 
\begin{pmatrix}
Line 143: Line 143:
 
\hspace{0.05cm}. $$
 
\hspace{0.05cm}. $$
  
*Bei dieser Berechnung wurde zwischen der Polynomdarstellung und der Koeffizientendarstellung auf der Angabenseite variiert. Damit lautet das Gleichungssystem:
+
*In this calculation, we varied between the polynomial representation and the coefficient representation on the data side. Thus the system of equations reads:
 
:$$\begin{pmatrix}
 
:$$\begin{pmatrix}
 
(001) + (010) \\
 
(001) + (010) \\
Line 173: Line 173:
 
\end{pmatrix}\hspace{0.05cm}.$$
 
\end{pmatrix}\hspace{0.05cm}.$$
  
*Die zweite Form ergibt sich, wenn man die dritte Zeile aus der Modulo&ndash;$2$&ndash;Summe der Zeilen 2 und 3 ersetzt.  
+
*The second form is obtained by substituting the third row from the modulo $2$ sum of rows 2 and 3.  
*Aus der letzten Zeile folgt nun $z_1 = 1$ und die Zeilen 1 und 2 lauten dann:
+
*From the last row now follows $z_1 = 1$ and the rows 1 and 2 are then:
 
:$$(1)\hspace{0.3cm}z_0 + (010) \cdot 1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (011)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}z_0 = (001) = 1\hspace{0.05cm},$$
 
:$$(1)\hspace{0.3cm}z_0 + (010) \cdot 1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (011)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}z_0 = (001) = 1\hspace{0.05cm},$$
 
:$$(2)\hspace{0.3cm}z_0 + (100) \cdot 1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (101)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}z_0 = (001) = 1\hspace{0.05cm}. $$
 
:$$(2)\hspace{0.3cm}z_0 + (100) \cdot 1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (101)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}z_0 = (001) = 1\hspace{0.05cm}. $$
  
*Beide Gleichungen führen zum gleichen Ergebnis $z_0 = 1, \ z_1 = 1$. Die Decodierung ist erfolgreich.
+
*Both equations lead to the same result $z_0 = 1, \ z_1 = 1$. The decoding is successful.
  
  
  
'''(4)'''&nbsp; Die Decodierung passiert auf folgenden Schritten:
+
'''(4)'''&nbsp; Decoding happens on following steps:
 
:$${ \boldsymbol{\rm H}}_{\rm K} \cdot \underline {z}_{\rm K}^{\rm T} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}
 
:$${ \boldsymbol{\rm H}}_{\rm K} \cdot \underline {z}_{\rm K}^{\rm T} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}
 
\begin{pmatrix}
 
\begin{pmatrix}
Line 238: Line 238:
 
\hspace{0.05cm}. $$
 
\hspace{0.05cm}. $$
  
*Wir ersetzen nun die Zeile 2 durch die Modulo&ndash;$2$&ndash;Summe der Zeilen 1 und 2 sowie die Zeile 3 durch die Modulo&ndash;$2$&ndash;Summe der Zeilen 1 und 3:
+
*We now replace row 2 with the modulo $2$ sum of rows 1 and 2, and row 3 with the modulo $2$ sum of rows 1 and 3:
 
:$$\begin{pmatrix}
 
:$$\begin{pmatrix}
 
(001) &(010) &(100)\\
 
(001) &(010) &(100)\\
Line 256: Line 256:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Aus der letzten Zeile folgt $z_1 + z_2 = 0 \ \Rightarrow \ z_2 = z_1$. Eingesetzt in die zweite Zeile dieser Matrixgleichung erhält man:
+
*From the last row follows $z_1 + z_2 = 0 \ \Rightarrow \ z_2 = z_1$. Substituting into the second row of this matrix equation we get:
 
:$$\big[(110) + (010)\big] \cdot z_1 = (100) \cdot z_1 = (111) \hspace{0.2cm} \Rightarrow \hspace{0.2cm}
 
:$$\big[(110) + (010)\big] \cdot z_1 = (100) \cdot z_1 = (111) \hspace{0.2cm} \Rightarrow \hspace{0.2cm}
 
\alpha^2 \cdot z_1 = \alpha^5\hspace{0.2cm}\Rightarrow \hspace{0.2cm}
 
\alpha^2 \cdot z_1 = \alpha^5\hspace{0.2cm}\Rightarrow \hspace{0.2cm}
Line 262: Line 262:
 
\hspace{0.05cm}. $$
 
\hspace{0.05cm}. $$
  
*Mit diesem Ergebnis folgt aus der ersten Matrixzeile:
+
*With this result follows from the first matrix row:
 
:$$z_0 + \big[(010) + (100)\big] \cdot z_1 = z_0 + (110) \cdot z_1 = (011) $$
 
:$$z_0 + \big[(010) + (100)\big] \cdot z_1 = z_0 + (110) \cdot z_1 = (011) $$
 
:$$\Rightarrow \hspace{0.2cm}  z_0 + \alpha^4 \cdot \alpha^3 = z_0 + 1 =  \alpha^3  
 
:$$\Rightarrow \hspace{0.2cm}  z_0 + \alpha^4 \cdot \alpha^3 = z_0 + 1 =  \alpha^3  
Line 268: Line 268:
 
z_0 =  \alpha^3 + 1 = ( \alpha + 1) +1\hspace{0.15cm} \underline{= \alpha}\hspace{0.05cm}.$$
 
z_0 =  \alpha^3 + 1 = ( \alpha + 1) +1\hspace{0.15cm} \underline{= \alpha}\hspace{0.05cm}.$$
  
*Richtig ist demnach der <u>Lösungsvorschlag 2</u>.
+
*The correct solution is therefore <u>proposal solution 2</u>.
  
  
  
'''(5)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 4</u>. &nbsp; Begründung:
+
'''(5)'''&nbsp; Correct is <u>proposed solution 4</u>. &nbsp; Reason:
* Aus den drei bekannten Symbolen $0, \, 1, \, \alpha$ kann man nicht vier Informationssymbole gewinnen.
+
* Four information symbols cannot be obtained from the three known symbols $0, \, 1, \, \alpha$.
* Die $\mathbf{H}$&ndash;Matrix dieses $(7, \, 4, \, 4)_8$&ndash;Codes hat genau $n - k = 3$ Zeilen.  
+
*The $\mathbf{H}$ matrix of this $(7, \, 4, \, 4)_8$ code has exactly $n - k = 3$ rows.  
*Man hat damit auch nur drei Gleichungen. Benötigen würde man aber vier Gleichungen für die Unbekannten $z_0, \ z_1, \ z_2$ und $z_6$.
+
*This also means that you have only three equations. But you would need four equations for the unknowns $z_0, \ z_1, \ z_2$ and $z_6$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 23:35, 3 September 2022

${\rm GF}(2^3)$, represented as powers, polynomials and coefficient vectors

We consider here an encoding and decoding system corresponding to the  "graph"  in the theory section for this chapter. To be noted:

  • The Reed–Solomon code is given by the generator matrix  $\mathbf{G}$  and the parity-check matrix  $\mathbf{H}$  where all elements are from the Galois field  $\rm GF(2^3) \ \backslash \ \{0\}$ :
$${ \boldsymbol{\rm G}} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1\\ 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^{5} & \alpha^{1} & \alpha^{4} \end{pmatrix} \hspace{0.05cm},$$
$${ \boldsymbol{\rm H}} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \begin{pmatrix} 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^{5} & \alpha^{1} & \alpha^{4} \end{pmatrix} \hspace{0.05cm}.$$
  • All code symbols  $c_i ∈ \{0, \, 1, \, \alpha, \, \alpha^2, \, \alpha^3, \, \alpha^4, \, \alpha^5, \, \alpha^6\}$  are represented by  $m = 3$  bits and transmitted via the erasure channel (highlighted in green in the graphic)  $(m$ BEC$)$ . A code symbol is already marked as an erasure (Erasure )  $\rm E$  if one of the three associated bits is uncertain.
  • The code word finder  (CWF) has the exercise of generating the regenerated codeword  $\underline{z}$  from the partially erased received word  $\underline{y}$ . It must be ensured that the result  $\underline{z}$  is indeed a valid Reed–Solomon codeword.
  • If the received word  $\underline{y}$  contains too many erasures, the decoder outputs a message of the type "symbol cannot be decoded".  So no attempt is made to estimate the codeword. If  $\underline{z}$  is output, this is also correct:  $\underline{z} = \underline{c}$.
  • The sought information value  $\underline{v} = \underline{u}$  results from the inverse coder function  $\underline{v} = {\rm enc}^{-1}(\underline{z})$. With the generator matrix  $\mathbf{G}$  this can be realized as follows:
$$\underline{c} = {\rm enc}(\underline{u}) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \underline{u} \cdot {\boldsymbol{\rm G}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{z} = {\rm enc}(\underline{v}) = \underline{v} \cdot {\boldsymbol{\rm G}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{v} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm enc}^{-1}(\underline{z}) = \underline{z} \cdot {\boldsymbol{\rm G}}^{\rm T}\hspace{0.05cm}.$$





Hints:


Questions

1

Specify the code parameters of the present Reed–Solomon code.

$n \ = \ $

$k \ = \ $

$d_{\rm min} \ = \ $

2

Can the received vector  $\underline{y} = (0, \, 0, \, 0,\, 0, \, 0, \, 0, \, {\rm E})$  be decoded??

YES.
NO.

3

Can the received vector  $\underline{y} = (\rm E, \, E, \, 1, \, 1, \, 1, \, 1, \, 1)$  be decoded?

YES.
NO.

4

What is the result of decoding  $\underline{y} = (\rm E, \, E, \, E, \, 0, \, 1, \, \alpha, \, 0)$?

$z_0 = \alpha, \ z_1 = \alpha^3, \ z_2 = 0$.
$z_0 = \alpha, \ z_1 = \alpha^3, \ z_2 = \alpha^3$.
$z_0 = 1, \ z_1 = 0, \ z_2 = \alpha^3$.
The decoding does not lead to any result.

5

What is the result of decoding  $\underline{y} = (\rm E, \, E, \, E, \, 0, \, 1, \, \alpha, \, E)$?

$z_0 = \alpha, \ z_1 = \alpha^3, \ z_2 = 0, \ z_6 = 1$.
$z_0 = \alpha, \ z_1 = \alpha^3, \ z_2 = \alpha^3, \ z_6 = 1$.
$z_0 = 1, \ z_1 = 0, \ z_2 = \alpha^3, \ z_6 = 1$.
The decoding does not lead to any result.


Solution

(1)  The number of columns of the parity-check matrix $\mathbf{H}$ indicates the code length: $n \ \underline{= 7}$.

  • The same result is obtained if we assume the order $q = 8$ of the Galois field. For the Reed–Solomon codes $n = q - 1$ is valid.
  • The number of rows of the parity-check matrix is equal to $n - k = 3 \ \Rightarrow \ k \ \underline{= 4}$.
  • Of all Reed–Solomon codes, the "Singleton bound" is satisfied   ⇒   $d_{\rm min} = n - k + 1 \ \underline{= 4}$.
  • Thus, it is the Reed–Solomon code $(7, \, 4, \, 4)_8$.


(2)  Decoding is certainly possible as long as the number $e$ of extinctions is smaller than the minimum distance $d_{\rm min}$. This condition is fulfilled here  ⇒  YES.

  • Since the null word is allowed in all RS codes and every other codeword contains at least four symbols not equal to "$0$", it is already certain without calculation that the null word was sent.
  • The formal calculation confirms this result:
$${ \boldsymbol{\rm H}}_{\rm K} \cdot \underline {z}_{\rm K}^{\rm T} = \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \begin{pmatrix} \alpha^6\\ \alpha^{5}\\ \alpha^{4} \end{pmatrix} \cdot z_6 = \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} z_6 = 0 \hspace{0.05cm}. $$


(3)  Again  $e = 2$  is smaller than  $d_{\rm min} = 4$   ⇒   YES.

  • Since $(1, \, 1, \, 1, \, 1, \, 1, \, 1, \, 1)$ is also a valid codeword, we expect $z_0 = 1$ und $z_1 = 1$ in the formal verification.
$${ \boldsymbol{\rm H}}_{\rm K} \cdot \underline {z}_{\rm K}^{\rm T} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \begin{pmatrix} \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ \alpha^6 & \alpha^2 & \alpha^{5} & \alpha^{1} & \alpha^{4} \end{pmatrix} \cdot\begin{pmatrix} 1\\ 1\\ 1\\ 1\\ 1 \end{pmatrix}= \begin{pmatrix} \alpha^2 + \alpha^3 + \alpha^4 + \alpha^5 + \alpha^6\\ \alpha^4 + \alpha^6 + \alpha^1 + \alpha^{3} + \alpha^{5}\\ \alpha^6 + \alpha^2 + \alpha^{5} + \alpha^{1} + \alpha^{4} \end{pmatrix}$$
$$\Rightarrow \hspace{0.3cm}{ \boldsymbol{\rm H}}_{\rm K} \cdot \underline {z}_{\rm K}^{\rm T} \hspace{-0.15cm} \ = \ \begin{pmatrix} (100) + (011) + (110) + (111) + (101)\\ (110) + (101) + (010) + (011) + (111)\\ (101) + (100) + (111) + (010) + (110) \end{pmatrix} = \begin{pmatrix} (011)\\ (101)\\ (010) \end{pmatrix} = \begin{pmatrix} \alpha^3\\ \alpha^6\\ \alpha^1 \end{pmatrix} \hspace{0.05cm}. $$
  • In this calculation, we varied between the polynomial representation and the coefficient representation on the data side. Thus the system of equations reads:
$$\begin{pmatrix} (001) + (010) \\ (001) + (100)\\ (001) + (011) \end{pmatrix} \cdot \begin{pmatrix} z_0\\ z_1 \end{pmatrix} = \begin{pmatrix} (011)\\ (101)\\ (010) \end{pmatrix} \hspace{0.25cm} \Rightarrow \hspace{0.25cm} \begin{pmatrix} (001) + (010) \\ (001) + (100)\\ (000) + (111) \end{pmatrix} \cdot \begin{pmatrix} z_0\\ z_1 \end{pmatrix} = \begin{pmatrix} (011)\\ (101)\\ (111) \end{pmatrix}\hspace{0.05cm}.$$
  • The second form is obtained by substituting the third row from the modulo $2$ sum of rows 2 and 3.
  • From the last row now follows $z_1 = 1$ and the rows 1 and 2 are then:
$$(1)\hspace{0.3cm}z_0 + (010) \cdot 1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (011)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}z_0 = (001) = 1\hspace{0.05cm},$$
$$(2)\hspace{0.3cm}z_0 + (100) \cdot 1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (101)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}z_0 = (001) = 1\hspace{0.05cm}. $$
  • Both equations lead to the same result $z_0 = 1, \ z_1 = 1$. The decoding is successful.


(4)  Decoding happens on following steps:

$${ \boldsymbol{\rm H}}_{\rm K} \cdot \underline {z}_{\rm K}^{\rm T} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \begin{pmatrix} \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ \alpha^2 & \alpha^{5} & \alpha^{1} & \alpha^{4} \end{pmatrix} \cdot\begin{pmatrix} 0\\ 1\\ \alpha\\ 0 \end{pmatrix}= \begin{pmatrix} \alpha^4 + \alpha^6\\ \alpha^1 + \alpha^{4}\\ \alpha^5 + \alpha^2 \end{pmatrix}= \begin{pmatrix} (110) + (101)\\ (010) + (110)\\ (111) + (100) \end{pmatrix} = \begin{pmatrix} (011)\\ (100)\\ (011) \end{pmatrix} \hspace{0.05cm},$$
$${ \boldsymbol{\rm H}}_{\rm E} \cdot \underline {z}_{\rm E}^{\rm T} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \begin{pmatrix} 1 & \alpha^1 & \alpha^2\\ 1 & \alpha^2 & \alpha^4\\ 1 & \alpha^3 & \alpha^6 \end{pmatrix} \cdot\begin{pmatrix} z_0\\ z_1\\ z_2 \end{pmatrix}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \begin{pmatrix} (001) &(010) &(100)\\ (001) &(100) &(110)\\ (001) &(011) &(101) \end{pmatrix} \cdot \begin{pmatrix} z_0\\ z_1\\ z_2 \end{pmatrix}= \begin{pmatrix} (011)\\ (100)\\ (011) \end{pmatrix} \hspace{0.05cm}. $$
  • We now replace row 2 with the modulo $2$ sum of rows 1 and 2, and row 3 with the modulo $2$ sum of rows 1 and 3:
$$\begin{pmatrix} (001) &(010) &(100)\\ (000) &(110) &(010)\\ (000) &(001) &(001) \end{pmatrix} \cdot \begin{pmatrix} z_0\\ z_1\\ z_2 \end{pmatrix}= \begin{pmatrix} (011)\\ (111)\\ (000) \end{pmatrix} \hspace{0.05cm}.$$
  • From the last row follows $z_1 + z_2 = 0 \ \Rightarrow \ z_2 = z_1$. Substituting into the second row of this matrix equation we get:
$$\big[(110) + (010)\big] \cdot z_1 = (100) \cdot z_1 = (111) \hspace{0.2cm} \Rightarrow \hspace{0.2cm} \alpha^2 \cdot z_1 = \alpha^5\hspace{0.2cm}\Rightarrow \hspace{0.2cm} z_1 \hspace{0.1cm}\underline{= \alpha^3}\hspace{0.05cm},\hspace{0.2cm}z_2 \hspace{0.1cm}\underline{= \alpha^3} \hspace{0.05cm}. $$
  • With this result follows from the first matrix row:
$$z_0 + \big[(010) + (100)\big] \cdot z_1 = z_0 + (110) \cdot z_1 = (011) $$
$$\Rightarrow \hspace{0.2cm} z_0 + \alpha^4 \cdot \alpha^3 = z_0 + 1 = \alpha^3 \hspace{0.2cm} \Rightarrow \hspace{0.2cm} z_0 = \alpha^3 + 1 = ( \alpha + 1) +1\hspace{0.15cm} \underline{= \alpha}\hspace{0.05cm}.$$
  • The correct solution is therefore proposal solution 2.


(5)  Correct is proposed solution 4.   Reason:

  • Four information symbols cannot be obtained from the three known symbols $0, \, 1, \, \alpha$.
  • The $\mathbf{H}$ matrix of this $(7, \, 4, \, 4)_8$ code has exactly $n - k = 3$ rows.
  • This also means that you have only three equations. But you would need four equations for the unknowns $z_0, \ z_1, \ z_2$ and $z_6$.