Difference between revisions of "Aufgaben:Exercise 2.12: Decoding at RSC (7, 4, 4) to Base 8"

From LNTwww
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Fehlerkorrektur nach Reed–Solomon–Codierung}}
+
{{quiz-Header|Buchseite=Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding}}
  
[[File:P_ID2553__KC_A_2_12_neu.png|right|frame|ELP–Belegungsschemata für  $r = 1, \ r = 2, \ r = 3$]]
+
[[File:P_ID2553__KC_A_2_12_neu.png|right|frame|ELP assignment schemes for  $r = 1, \ r = 2, \ r = 3$]]
Wir analysieren den Peterson–Algorithmus, der im Abschnitt  [[Channel_Coding/Fehlerkorrektur_nach_Reed%E2%80%93Solomon%E2%80%93Codierung#Vorgehensweise_beim_.E2.80.9EBounded_Distance_Decoding.E2.80.9D| Vorgehensweise beim "Bounded Distance Decoding]]  ausführlich dargelegt ist. Vorausgesetzt wird der Reed–Solomon–Code mit den Parametern  $n = 7, \ k = 4$  und  $d_{\rm min} = 4$, wobei alle Codesymbole aus  $\rm GF(2^3)$  stammen und alle Rechenoperationen demzufolge ebenfalls in  $\rm GF(2^3)$  durchzuführen sind.
+
We analyze the Peterson algorithm detailed in the section  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding#Step_.28A.29:_Evaluation_of_the_syndrome_in_BDD| "Procedure for "Bounded Distance Decoding""]]  . Assumed is the Reed–Solomon code with parameters  $n = 7, \ k = 4$  and  $d_{\rm min} = 4$, where all code symbols come from  $\rm GF(2^3)$  and all arithmetic operations are consequently to be performed in  $\rm GF(2^3)$  as well.
  
Die Prüfmatrix dieses Codes lautet:
+
The parity-check matrix of this code is:
 
:$${ \boldsymbol{\rm H}} =  
 
:$${ \boldsymbol{\rm H}} =  
 
\begin{pmatrix}
 
\begin{pmatrix}
Line 12: Line 12:
 
\end{pmatrix} \hspace{0.05cm}.$$
 
\end{pmatrix} \hspace{0.05cm}.$$
  
Im  [[Channel_Coding/Fehlerkorrektur_nach_Reed%E2%80%93Solomon%E2%80%93Codierung#Schritt_.28A.29:_Auswertung_des_Syndroms_beim_BDD|Schritt  $\rm (A)$]]  des hier betrachteten Decodier–Algorithmus' muss das Syndrom  $\underline{s} = \underline{y} \cdot \mathbf{H}^{\rm T}$  berechnet werden. Für das hier vorausgesetzte Empfangswort  $\underline{y} = (\alpha^1, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha, \, 0)$  ergibt sich das Syndrom zu  $\underline{s} = (\alpha^4, \, \alpha^5, \, \alpha^6)$, wie in der  [[Aufgaben:Aufgabe_2.12Z:_Reed–Solomon–Syndromberechnung|Aufgabe 2.12Z]]  noch gezeigt wird.  
+
In  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding#Step_.28A.29:_Evaluation_of_the_syndrome_in_BDD|"Step  $\rm (A)$"]]  the decoding algorithm considered here, the syndrome  $\underline{s} = \underline{y} \cdot \mathbf{H}^{\rm T}$  must be computed. For the received word assumed here  $\underline{y} = (\alpha^1, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha, \, 0)$  the syndrome results in  $\underline{s} = (\alpha^4, \, \alpha^5, \, \alpha^6)$, as in the  [[Aufgaben: Exercise_2. 12Z:_Reed-Solomon_Syndrome_Calculation|"Exercise 2.12Z"]]  yet to be shown.  
  
Danach müssen die  [[Channel_Coding/Fehlerkorrektur_nach_Reed%E2%80%93Solomon%E2%80%93Codierung#Schritt_.28D.29:_Abschlie.C3.9Fende_Fehlerkorrektur|ELP–Koeffizientenvektoren]]  gemäß der nebenstehenden Abbildung aufgestellt und ausgewertet werden, wobei die Belegung davon abhängt, ob man von  $r = 1, \ r = 2$  oder  $r = 3$  Symbolfehlern im Empfangswort ausgeht. "ELP" steht für ''Error Locator Polynom''.
+
After that the  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding#Step_.28D.29 :_Final_error_correction|"ELP coefficient vectors"]]  be set up and evaluated according to the adjacent figure, where the assignment depends on whether one assumes  $r = 1, \ r = 2$  or  $r = 3$  symbol errors in the received word. "ELP" stands for ''Error Locator Polynomial''.
  
Sind für die angenommene Symbolfehlerzahl  $r$  alle Gleichungen  ${\it \underline{\Lambda}}_l \cdot \underline{s}^{\rm T} = 0$  erfüllt, so weist das Empfangswort  $\underline{y}$  tatsächlich genau $r$ Symbolfehler auf.
+
If all equations  ${\it \underline{\Lambda}}_l \cdot \underline{s}^{\rm T} = 0$  are satisfied for the assumed symbol error count  $r$, then the received word  $\underline{y}$  actually has exactly $r$ symbol errors.
  
Die weiteren Schritte können Sie dem Theorieteil entnehmen:
+
You can take the further steps from the theory part:
* Schritt  $\rm (C)$:  [[Channel_Coding/Fehlerkorrektur_nach_Reed%E2%80%93Solomon%E2%80%93Codierung#Schritt_.28C.29:_Lokalisierung_der_Fehlerstellen|Lokalisierung der Fehlerpositionen]],
+
* Step  $\rm (C)$:  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding#Step_.28C.29:_Localization_of_the_error_locations|"Localization of error locations"]],
* Schritt  $\rm (D)$:  [[Channel_Coding/Fehlerkorrektur_nach_Reed%E2%80%93Solomon%E2%80%93Codierung#Schritt_.28D.29:_Abschlie.C3.9Fende_Fehlerkorrektur|Ermittlung der Fehlerwerte]].
+
* Step  $\rm (D)$:  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding#Step_.28D.29:_Final_error_correction|"Determination of the error values"]].
  
  
Line 27: Line 27:
  
  
''Hinweis:''
+
Hints:
* Die Aufgabe bezieht sich auf das Kapitel  [[Channel_Coding/Fehlerkorrektur_nach_Reed%E2%80%93Solomon%E2%80%93Codierung| Fehlerkorrektur nach Reed–Solomon–Codierung]].
+
* The exercise refers to the chapter  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding| "Error correction according to Reed–Solomon coding"]].
  
  
Line 34: Line 34:
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Belegungsschemata sind für diese Aufgabe relevant?
+
{Which occupancy schemes are relevant for this exercise?
 
|type="()"}
 
|type="()"}
+ Das blau hinterlegte Schema&nbsp; $(r = 1)$.
+
+ The blue highlighted schema&nbsp; $(r = 1)$.
- Das rot hinterlegte Schema&nbsp; $(r = 2)$.
+
- The red highlighted schema&nbsp; $(r = 2)$.
- Das grün hinterlegte Schema&nbsp; $(r = 3)$.
+
- The green highlighted schema&nbsp; $(r = 3)$.
  
{Wie groß ist die Länge&nbsp; $L$&nbsp; der ELP&ndash;Koeffizientenvektoren&nbsp; ${\it \underline{\Lambda}}_l$?
+
{What is the length&nbsp; $L$&nbsp; of the ELP coefficient vectors&nbsp; ${\it \underline{\Lambda}}_l$?
 
|type="{}"}
 
|type="{}"}
 
$L \ = \ ${ 3 3% }  
 
$L \ = \ ${ 3 3% }  
  
{Wieviele solcher Vektoren&nbsp; ${\it \underline{\Lambda}}_l$&nbsp; mit Index&nbsp; $l = 1, \ ... \ , \ l_{\rm max}$&nbsp; gibt es?
+
{How many such vectors&nbsp; ${\it \underline{\Lambda}}_l$&nbsp; with index&nbsp; $l = 1, \ ... \ , \ l_{\rm max}$&nbsp; are there?
 
|type="{}"}
 
|type="{}"}
 
$l_{\rm max} \ = \ ${ 2 3% }
 
$l_{\rm max} \ = \ ${ 2 3% }
  
{Das Syndrom ergibt sich zu&nbsp; $\underline{s} = (\alpha^4, \, \alpha^5, \, \alpha^6)$. Ist die Decodierung erfolgreich?
+
{The syndrome results in&nbsp; $\underline{s} = (\alpha^4, \, \alpha^5, \, \alpha^6)$. Is the decoding successful?
 
|type="()"}
 
|type="()"}
+ JA.
+
+ YES.
- NEIN.
+
- NO.
  
{Welches Symbol wurde verfälscht?
+
{Which symbol was corrupted?
 
|type="()"}
 
|type="()"}
- Das Symbol 0,  
+
- The symbol 0,  
+ das Symbol 1,
+
+ the symbol 1,
- das Symbol 6.
+
- the symbol 6.
  
{Geben Sie den Wert des verfälschten Symbols&nbsp; $e_i &ne; 0$&nbsp; an.
+
{Specify the value of the corrupted symbol&nbsp; $e_i &ne; 0$&nbsp;.
 
|type="()"}
 
|type="()"}
 
- $e_i = \alpha^2$,
 
- $e_i = \alpha^2$,
Line 67: Line 67:
 
- $e_i = 1$.
 
- $e_i = 1$.
  
{Das Syndrom sei nun&nbsp; $\underline{s} = (\alpha^2, \, \alpha^4, \, \alpha^5)$. Ist damit die Decodierung erfolgreich?
+
{The syndrome now be&nbsp; $\underline{s} = (\alpha^2, \, \alpha^4, \, \alpha^5)$. Does this make the decoding successful?
 
|type="()"}
 
|type="()"}
- JA.
+
- YES.
+ NEIN.
+
+ NO.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 1</u>:
+
'''(1)'''&nbsp; Correct is the <u>proposed solution 1</u>:
*Der betrachtete Reed&ndash;Solomon&ndash;Code $(7, \, 4, \, 4)_8$ kann wegen $d_{\rm min} = 4$ nur $t = &lfloor;(d_{\rm min} - 1)/2&rfloor; = 1$ Symbolfehler korrigieren.  
+
*The considered Reed&ndash;Solomon code $(7, \, 4, \, 4)_8$ can correct only $t = &lfloor;(d_{\rm min} - 1)/2&rfloor; = 1$ symbol errors because of $d_{\rm min} = 4$.  
*Relevant ist also nur das blau hinterlegte Schema, das für den Fall gilt, dass es genau einen Symbolfehler im Empfangswort gibt $(r = 1)$.
+
*So only the scheme with blue background is relevant, which is valid for the case that there is exactly one symbol error in the received words $(r = 1)$.
  
  
  
'''(2)'''&nbsp; Entsprechend der Grafik auf der Angabenseite besitzt der Vektor ${\it \underline{\Lambda}}_l$ hier $L = n - k \ \underline{= 3}$ Elemente.
+
'''(2)'''&nbsp; According to the graph on the specification page, the vector ${\it \underline{\Lambda}}_l$ here has $L = n - k \ \underline{= 3}$ elements.
  
  
  
'''(3)'''&nbsp; Es gibt nur die beiden ELP&ndash;Koeffizientenvektoren ${\it \underline{\Lambda}}_1 = (\lambda_0, \, 1, \, 0)$ und ${\it \underline{\Lambda}}_2 = (0, \, \lambda_0, \, 1) \ \Rightarrow \ l_{\rm max} \ \underline{= 2}$.
+
'''(3)'''&nbsp; There are only the two ELP coefficient vectors. ${\it \underline{\Lambda}}_1 = (\lambda_0, \, 1, \, 0)$ und ${\it \underline{\Lambda}}_2 = (0, \, \lambda_0, \, 1) \ \Rightarrow \ l_{\rm max} \ \underline{= 2}$.
  
  
  
'''(4)'''&nbsp; Aus ${\it \underline{\Lambda}}_1$ und ${\it \underline{\Lambda}}_2$ ergeben sich zwei skalare Bestimmungsgleichungen ${\it \underline{\Lambda}}_l \cdot \underline{s}^{\rm T} = 0$ für den Parameter $\lambda_0$:
+
'''(4)'''&nbsp; From ${\it \underline{\Lambda}}_1$ and ${\it \underline{\Lambda}}_2$ we get two scalar equations of determination ${\it \underline{\Lambda}}_l \cdot \underline{s}^{\rm T} = 0$ for the parameter $\lambda_0$:
 
:$$\lambda_0  \cdot \alpha^4 + \alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} \lambda_0  \cdot \alpha^4 = -\alpha^5 = \alpha^5 \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} \lambda_0  = \alpha \hspace{0.05cm},$$
 
:$$\lambda_0  \cdot \alpha^4 + \alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} \lambda_0  \cdot \alpha^4 = -\alpha^5 = \alpha^5 \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} \lambda_0  = \alpha \hspace{0.05cm},$$
 
:$$\lambda_0  \cdot \alpha^5 + \alpha^6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0  \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} \lambda_0  = \alpha \hspace{0.05cm}.$$
 
:$$\lambda_0  \cdot \alpha^5 + \alpha^6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0  \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} \lambda_0  = \alpha \hspace{0.05cm}.$$
  
Das Gleichungssystem ist eindeutig lösbar &nbsp; &#8658; &nbsp; Antwort <u>JA</u>.
+
The system of equations is uniquely solvable &nbsp; &#8658; &nbsp; Answer <u>YES</u>.
  
  
  
'''(5)'''&nbsp; Mit dem Ergebnis der Teilaufgabe (4) &nbsp; &#8658; &nbsp; $\lambda_0 = \alpha$ erhält man für das <i>Error Locator Polynom</i>
+
'''(5)'''&nbsp; Using the result of subtask (4) &nbsp; &#8658; &nbsp; $\lambda_0 = \alpha$, we obtain for the <i>error locator polynomial</i>.
 
:$${\it \Lambda}(x)=x \cdot \big ({\it \lambda}_0 +  x \big )
 
:$${\it \Lambda}(x)=x \cdot \big ({\it \lambda}_0 +  x \big )
 
=x \cdot \big (\alpha + x )$$
 
=x \cdot \big (\alpha + x )$$

Revision as of 00:24, 10 September 2022

ELP assignment schemes for  $r = 1, \ r = 2, \ r = 3$

We analyze the Peterson algorithm detailed in the section  "Procedure for "Bounded Distance Decoding""  . Assumed is the Reed–Solomon code with parameters  $n = 7, \ k = 4$  and  $d_{\rm min} = 4$, where all code symbols come from  $\rm GF(2^3)$  and all arithmetic operations are consequently to be performed in  $\rm GF(2^3)$  as well.

The parity-check matrix of this code is:

$${ \boldsymbol{\rm H}} = \begin{pmatrix} 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^{5} & \alpha^{1} & \alpha^{4} \end{pmatrix} \hspace{0.05cm}.$$

In  "Step  $\rm (A)$"  the decoding algorithm considered here, the syndrome  $\underline{s} = \underline{y} \cdot \mathbf{H}^{\rm T}$  must be computed. For the received word assumed here  $\underline{y} = (\alpha^1, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha, \, 0)$  the syndrome results in  $\underline{s} = (\alpha^4, \, \alpha^5, \, \alpha^6)$, as in the  "Exercise 2.12Z"  yet to be shown.

After that the  "ELP coefficient vectors"  be set up and evaluated according to the adjacent figure, where the assignment depends on whether one assumes  $r = 1, \ r = 2$  or  $r = 3$  symbol errors in the received word. "ELP" stands for Error Locator Polynomial.

If all equations  ${\it \underline{\Lambda}}_l \cdot \underline{s}^{\rm T} = 0$  are satisfied for the assumed symbol error count  $r$, then the received word  $\underline{y}$  actually has exactly $r$ symbol errors.

You can take the further steps from the theory part:




Hints:



Questions

1

Which occupancy schemes are relevant for this exercise?

The blue highlighted schema  $(r = 1)$.
The red highlighted schema  $(r = 2)$.
The green highlighted schema  $(r = 3)$.

2

What is the length  $L$  of the ELP coefficient vectors  ${\it \underline{\Lambda}}_l$?

$L \ = \ $

3

How many such vectors  ${\it \underline{\Lambda}}_l$  with index  $l = 1, \ ... \ , \ l_{\rm max}$  are there?

$l_{\rm max} \ = \ $

4

The syndrome results in  $\underline{s} = (\alpha^4, \, \alpha^5, \, \alpha^6)$. Is the decoding successful?

YES.
NO.

5

Which symbol was corrupted?

The symbol 0,
the symbol 1,
the symbol 6.

6

Specify the value of the corrupted symbol  $e_i ≠ 0$ .

$e_i = \alpha^2$,
$e_i = \alpha^3$,
$e_i = 1$.

7

The syndrome now be  $\underline{s} = (\alpha^2, \, \alpha^4, \, \alpha^5)$. Does this make the decoding successful?

YES.
NO.


Solution

(1)  Correct is the proposed solution 1:

  • The considered Reed–Solomon code $(7, \, 4, \, 4)_8$ can correct only $t = ⌊(d_{\rm min} - 1)/2⌋ = 1$ symbol errors because of $d_{\rm min} = 4$.
  • So only the scheme with blue background is relevant, which is valid for the case that there is exactly one symbol error in the received words $(r = 1)$.


(2)  According to the graph on the specification page, the vector ${\it \underline{\Lambda}}_l$ here has $L = n - k \ \underline{= 3}$ elements.


(3)  There are only the two ELP coefficient vectors. ${\it \underline{\Lambda}}_1 = (\lambda_0, \, 1, \, 0)$ und ${\it \underline{\Lambda}}_2 = (0, \, \lambda_0, \, 1) \ \Rightarrow \ l_{\rm max} \ \underline{= 2}$.


(4)  From ${\it \underline{\Lambda}}_1$ and ${\it \underline{\Lambda}}_2$ we get two scalar equations of determination ${\it \underline{\Lambda}}_l \cdot \underline{s}^{\rm T} = 0$ for the parameter $\lambda_0$:

$$\lambda_0 \cdot \alpha^4 + \alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda_0 \cdot \alpha^4 = -\alpha^5 = \alpha^5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda_0 = \alpha \hspace{0.05cm},$$
$$\lambda_0 \cdot \alpha^5 + \alpha^6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda_0 = \alpha \hspace{0.05cm}.$$

The system of equations is uniquely solvable   ⇒   Answer YES.


(5)  Using the result of subtask (4)   ⇒   $\lambda_0 = \alpha$, we obtain for the error locator polynomial.

$${\it \Lambda}(x)=x \cdot \big ({\it \lambda}_0 + x \big ) =x \cdot \big (\alpha + x )$$
$$\Rightarrow \hspace{0.3cm} {\it \Lambda}(\alpha^0 )\hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 \cdot \big ( \alpha + 1 \big ) = \alpha + 1 \ne 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm Keine\hspace{0.15cm} Nullstelle}\hspace{0.05cm},$$
$$\hspace{0.875cm} {\it \Lambda}(\alpha^1)\hspace{-0.15cm} \ = \ \hspace{-0.15cm}\alpha \cdot \big (\alpha + \alpha\big ) = 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{ \boldsymbol{\rm Nullstelle}}\hspace{0.05cm}.$$
  • Verfälscht wurde also das Symbol an der Position 1  ⇒  Lösungsvorschlag 2.
  • Da die Berechnung in der Teilaufgabe (4) unter der Bedingung $r = 1$ erfolgte, wurden alle anderen Symbole richtig übertragen:
Umrechnungstabellen für das Galoisfeld $\rm GF(2^3)$
$$\underline {e} = (0, e_1, 0, 0, 0, 0, 0)\hspace{0.05cm}. $$


(6)  Aus der Bedingung $\underline{e} \cdot \mathbf{H}^{\rm T} = \underline{s}^{\rm T}$ folgt

$$(0, e_1, 0, 0, 0, 0, 0) \cdot \begin{pmatrix} 1 & 1 & 1 \\ \alpha^1 & \alpha^2 & \alpha^3 \\ \alpha^2 & \alpha^4 & \alpha^6 \\ \alpha^3 & \alpha^6 & \alpha^9 \\ \alpha^4 & \alpha^8 & \alpha^{12} \\ \alpha^5 & \alpha^{10} & \alpha^{15} \\ \alpha^6 & \alpha^{12} & \alpha^{18} \end{pmatrix} \hspace{0.15cm}\stackrel{!}{=} \hspace{0.15cm} \begin{pmatrix} \alpha^4\\ \alpha^5\\ \alpha^6 \end{pmatrix} $$
$$\Rightarrow \hspace{0.3cm} e_1 \cdot \alpha = \alpha^4\hspace{0.05cm},\hspace{0.4cm} e_1 \cdot \alpha^2 = \alpha^5\hspace{0.05cm},\hspace{0.4cm} e_1 \cdot \alpha^3 = \alpha^6\hspace{0.05cm}. $$
  • Die Lösung führt stets zum Ergebnis $e_1 = \alpha^3$  ⇒  Antwort 2.
  • Mit dem Empfangswort $\underline{y} = (\alpha^1, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha^1, \, 0)$ erhält man das Decodierergebnis $\underline{z} = (\alpha^1, \, \alpha^3, \, \alpha^3, \, 0, \, 1, \, \alpha^1, \, 0)$.


(7)  Analog zur Teilaufgabe (4) lautet nun das Gleichungssystem:

$$\lambda_0 \cdot \alpha^2 + \alpha^4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda_0 = \alpha^2 \hspace{0.05cm},$$
$$\lambda_0 \cdot \alpha^4 + \alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda_0 = \alpha \hspace{0.05cm}.$$
  • Die beiden Lösungen widersprechen sich. Bei der Übertragung sind mindestens zwei Symbole verfälscht worden. Die Decodierung versagt   ⇒   Antwort NEIN.
  • Man müsste nun einen neuen Versuch gemäß dem roten Schema $(r = 2)$ starten.