Difference between revisions of "Aufgaben:Exercise 2.12: Decoding at RSC (7, 4, 4) to Base 8"

From LNTwww
 
(6 intermediate revisions by 2 users not shown)
Line 2: Line 2:
  
 
[[File:P_ID2553__KC_A_2_12_neu.png|right|frame|ELP assignment schemes for  $r = 1, \ r = 2, \ r = 3$]]
 
[[File:P_ID2553__KC_A_2_12_neu.png|right|frame|ELP assignment schemes for  $r = 1, \ r = 2, \ r = 3$]]
We analyze the Peterson algorithm detailed in the section  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding#Step_.28A.29:_Evaluation_of_the_syndrome_in_BDD| "Procedure for "Bounded Distance Decoding""]]  . Assumed is the Reed–Solomon code with parameters  $n = 7, \ k = 4$  and  $d_{\rm min} = 4$, where all code symbols come from  $\rm GF(2^3)$  and all arithmetic operations are consequently to be performed in  $\rm GF(2^3)$  as well.
+
We analyze the Peterson algorithm detailed in the section  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding#Step_.28A.29:_Evaluation_of_the_syndrome_in_BDD| "Procedure for Bounded Distance Decoding"]].  Assumed is the Reed–Solomon code with parameters  $n = 7, \ k = 4$  and  $d_{\rm min} = 4$,  where all code symbols come from  $\rm GF(2^3)$  and all arithmetic operations are consequently to be performed in  $\rm GF(2^3)$  as well.
  
 
The parity-check matrix of this code is:
 
The parity-check matrix of this code is:
Line 12: Line 12:
 
\end{pmatrix} \hspace{0.05cm}.$$
 
\end{pmatrix} \hspace{0.05cm}.$$
  
In  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding#Step_.28A.29:_Evaluation_of_the_syndrome_in_BDD|"Step  $\rm (A)$"]]  the decoding algorithm considered here, the syndrome  $\underline{s} = \underline{y} \cdot \mathbf{H}^{\rm T}$  must be computed. For the received word assumed here  $\underline{y} = (\alpha^1, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha, \, 0)$  the syndrome results in  $\underline{s} = (\alpha^4, \, \alpha^5, \, \alpha^6)$, as in the  [[Aufgaben: Exercise_2. 12Z:_Reed-Solomon_Syndrome_Calculation|"Exercise 2.12Z"]]  yet to be shown.  
+
# In  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding#Step_.28A.29:_Evaluation_of_the_syndrome_in_BDD|"Step  $\rm (A)$"]]  of the decoding algorithm considered here,  the syndrome  $\underline{s} = \underline{y} \cdot \mathbf{H}^{\rm T}$  must be computed. 
 +
# For the received word   $\underline{y} = (\alpha^1, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha, \, 0)$,  the syndrome results in  $\underline{s} = (\alpha^4, \, \alpha^5, \, \alpha^6)$,  as in the  [[Aufgaben:Exercise_2.12Z:_Reed-Solomon_Syndrome_Calculation|Exercise 2.12Z]]  yet to be shown.
 +
# After that the  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding#Step_.28D.29 :_Final_error_correction|"ELP coefficient vectors"]]  be set up and evaluated according to the adjacent figure,  where the assignment depends on whether one assumes   $r = 1, \ r = 2$  or  $r = 3$  symbol errors in the received word. 
 +
# If all equations  ${\it \underline{\Lambda}}_l \cdot \underline{s}^{\rm T} = 0$  are satisfied for the assumed symbol error count  $r$, then the received word  $\underline{y}$  actually has exactly $r$ symbol errors.
  
After that the  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding#Step_.28D.29 :_Final_error_correction|"ELP coefficient vectors"]]  be set up and evaluated according to the adjacent figure, where the assignment depends on whether one assumes  $r = 1, \ r = 2$  or  $r = 3$  symbol errors in the received word. "ELP" stands for ''Error Locator Polynomial''.
 
  
If all equations  ${\it \underline{\Lambda}}_l \cdot \underline{s}^{\rm T} = 0$  are satisfied for the assumed symbol error count  $r$, then the received word  $\underline{y}$  actually has exactly $r$ symbol errors.
 
 
You can take the further steps from the theory part:
 
* Step  $\rm (C)$:  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding#Step_.28C.29:_Localization_of_the_error_locations|"Localization of error locations"]],
 
* Step  $\rm (D)$:  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding#Step_.28D.29:_Final_error_correction|"Determination of the error values"]].
 
  
  
 +
Hints:
 +
* The exercise refers to the chapter  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding| "Error correction according to Reed–Solomon coding"]].
  
 +
*"ELP" stands for  "Error Locator Polynomial".
  
 
+
*You can take the further steps from the theory part:
 
+
:* Step  $\rm (C)$:  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding#Step_.28C.29:_Localization_of_the_error_locations|"Localization of error locations"]],
Hints:
+
:* Step  $\rm (D)$:  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding#Step_.28D.29:_Final_error_correction|"Determination of the error values"]].
* The exercise refers to the chapter  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding| "Error correction according to Reed–Solomon coding"]].
 
  
  
Line 50: Line 49:
 
$l_{\rm max} \ = \ ${ 2 3% }
 
$l_{\rm max} \ = \ ${ 2 3% }
  
{The syndrome results in  $\underline{s} = (\alpha^4, \, \alpha^5, \, \alpha^6)$. Is the decoding successful?
+
{The syndrome results in  $\underline{s} = (\alpha^4, \, \alpha^5, \, \alpha^6)$.  Is the decoding successful?
 
|type="()"}
 
|type="()"}
 
+ YES.
 
+ YES.
 
- NO.
 
- NO.
  
{Which symbol was corrupted?
+
{Which symbol was falsified?
 
|type="()"}
 
|type="()"}
- The symbol 0,  
+
- The symbol  "0",  
+ the symbol 1,
+
+ the symbol  "1",
- the symbol 6.
+
- the symbol  "6".
  
{Specify the value of the corrupted symbol  $e_i ≠ 0$ .
+
{Specify the value of the falsified symbol  $e_i ≠ 0$.
 
|type="()"}
 
|type="()"}
 
- $e_i = \alpha^2$,
 
- $e_i = \alpha^2$,
Line 67: Line 66:
 
- $e_i = 1$.
 
- $e_i = 1$.
  
{The syndrome now be  $\underline{s} = (\alpha^2, \, \alpha^4, \, \alpha^5)$. Does this make the decoding successful?
+
{The syndrome be now   $\underline{s} = (\alpha^2, \, \alpha^4, \, \alpha^5)$.  Does this make the decoding successful?
 
|type="()"}
 
|type="()"}
 
- YES.
 
- YES.
Line 75: Line 74:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Correct is the <u>proposed solution 1</u>:
+
'''(1)'''&nbsp; Correct is the&nbsp; <u>proposed solution 1</u>:
*The considered Reed&ndash;Solomon code $(7, \, 4, \, 4)_8$ can correct only $t = &lfloor;(d_{\rm min} - 1)/2&rfloor; = 1$ symbol errors because of $d_{\rm min} = 4$.  
+
*The considered Reed&ndash;Solomon code&nbsp; $(7, \, 4, \, 4)_8$&nbsp; can only correct&nbsp; $t = &lfloor;(d_{\rm min} - 1)/2&rfloor; = 1$&nbsp; symbol errors because of&nbsp; $d_{\rm min} = 4$.
*So only the scheme with blue background is relevant, which is valid for the case that there is exactly one symbol error in the received words $(r = 1)$.
+
 +
*So only the scheme with blue background is relevant,&nbsp; which is valid for the case that there is exactly one symbol error in the received words&nbsp; $(r = 1)$.
  
  
  
'''(2)'''&nbsp; According to the graph on the specification page, the vector ${\it \underline{\Lambda}}_l$ here has $L = n - k \ \underline{= 3}$ elements.
+
'''(2)'''&nbsp; According to the graph on the specification page,&nbsp; the vector&nbsp; ${\it \underline{\Lambda}}_l$&nbsp; here has&nbsp; $L = n - k \ \underline{= 3}$&nbsp; elements.
  
  
  
'''(3)'''&nbsp; There are only the two ELP coefficient vectors. ${\it \underline{\Lambda}}_1 = (\lambda_0, \, 1, \, 0)$ und ${\it \underline{\Lambda}}_2 = (0, \, \lambda_0, \, 1) \ \Rightarrow \ l_{\rm max} \ \underline{= 2}$.
+
'''(3)'''&nbsp; There are only the two ELP coefficient vectors&nbsp; ${\it \underline{\Lambda}}_1 = (\lambda_0, \, 1, \, 0)$,&nbsp; ${\it \underline{\Lambda}}_2 = (0, \, \lambda_0, \, 1) \ \Rightarrow \ l_{\rm max} \ \underline{= 2}$.
  
  
  
'''(4)'''&nbsp; From ${\it \underline{\Lambda}}_1$ and ${\it \underline{\Lambda}}_2$ we get two scalar equations of determination ${\it \underline{\Lambda}}_l \cdot \underline{s}^{\rm T} = 0$ for the parameter $\lambda_0$:
+
'''(4)'''&nbsp; From ${\it \underline{\Lambda}}_1$ and ${\it \underline{\Lambda}}_2$ we get two scalar equations of determination &nbsp; &rArr; &nbsp; ${\it \underline{\Lambda}}_l \cdot \underline{s}^{\rm T} = 0$&nbsp; for the parameter&nbsp; $\lambda_0$:
 
:$$\lambda_0  \cdot \alpha^4 + \alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} \lambda_0  \cdot \alpha^4 = -\alpha^5 = \alpha^5 \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} \lambda_0  = \alpha \hspace{0.05cm},$$
 
:$$\lambda_0  \cdot \alpha^4 + \alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} \lambda_0  \cdot \alpha^4 = -\alpha^5 = \alpha^5 \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} \lambda_0  = \alpha \hspace{0.05cm},$$
 
:$$\lambda_0  \cdot \alpha^5 + \alpha^6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0  \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} \lambda_0  = \alpha \hspace{0.05cm}.$$
 
:$$\lambda_0  \cdot \alpha^5 + \alpha^6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0  \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} \lambda_0  = \alpha \hspace{0.05cm}.$$
  
The system of equations is uniquely solvable &nbsp; &#8658; &nbsp; Answer <u>YES</u>.
+
The equation system is uniquely solvable &nbsp; &#8658; &nbsp; Answer <u>YES</u>.
  
  
  
'''(5)'''&nbsp; Using the result of subtask (4) &nbsp; &#8658; &nbsp; $\lambda_0 = \alpha$, we obtain for the <i>error locator polynomial</i>.
+
'''(5)'''&nbsp; Using the result of subtask&nbsp;  '''(4)''' &nbsp; &#8658; &nbsp; $\lambda_0 = \alpha$,&nbsp; we obtain for the error locator polynomial:
 
:$${\it \Lambda}(x)=x \cdot \big ({\it \lambda}_0 +  x \big )
 
:$${\it \Lambda}(x)=x \cdot \big ({\it \lambda}_0 +  x \big )
 
=x \cdot \big (\alpha + x )$$
 
=x \cdot \big (\alpha + x )$$
 
:$$\Rightarrow  \hspace{0.3cm} {\it \Lambda}(\alpha^0 )\hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 \cdot \big ( \alpha + 1 \big ) = \alpha + 1 \ne 0
 
:$$\Rightarrow  \hspace{0.3cm} {\it \Lambda}(\alpha^0 )\hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 \cdot \big ( \alpha + 1 \big ) = \alpha + 1 \ne 0
\hspace{0.3cm} \Rightarrow  \hspace{0.3cm}{\rm Keine\hspace{0.15cm} Nullstelle}\hspace{0.05cm},$$
+
\hspace{0.3cm} \Rightarrow  \hspace{0.3cm}{\rm No\hspace{0.15cm} zeros}\hspace{0.05cm},$$
 
:$$\hspace{0.875cm} {\it \Lambda}(\alpha^1)\hspace{-0.15cm} \ = \ \hspace{-0.15cm}\alpha \cdot \big (\alpha + \alpha\big ) = 0  
 
:$$\hspace{0.875cm} {\it \Lambda}(\alpha^1)\hspace{-0.15cm} \ = \ \hspace{-0.15cm}\alpha \cdot \big (\alpha + \alpha\big ) = 0  
\hspace{0.3cm} \Rightarrow  \hspace{0.3cm}{ \boldsymbol{\rm Nullstelle}}\hspace{0.05cm}.$$
+
\hspace{0.3cm} \Rightarrow  \hspace{0.3cm}{ \boldsymbol{\rm Zeros}}\hspace{0.05cm}.$$
  
*Verfälscht wurde also das Symbol an der Position 1 &nbsp;&#8658;&nbsp; <u>Lösungsvorschlag 2</u>.  
+
*So the symbol at position 1 was falsified &nbsp;&#8658;&nbsp; <u>Solution suggestion 2</u>.
*Da die Berechnung in der Teilaufgabe '''(4)''' unter der Bedingung $r = 1$ erfolgte, wurden alle anderen Symbole richtig übertragen:
+
[[File:P_ID2563__KC_T_2_5_Darstellung.png|right|frame|Umrechnungstabellen für das Galoisfeld $\rm GF(2^3)$]]  
+
*Since the calculation in subtask&nbsp; '''(4)'''&nbsp; was done under the condition&nbsp; $r = 1$,&nbsp; all other symbols were transferred correctly:
 +
[[File:EN_KC_Z_2_5_neu.png|right|frame|$\rm GF(2^3)$&nbsp; representation as powers, polynomials, vectors]]
 
:$$\underline {e} =  (0, e_1, 0, 0, 0, 0, 0)\hspace{0.05cm}. $$
 
:$$\underline {e} =  (0, e_1, 0, 0, 0, 0, 0)\hspace{0.05cm}. $$
  
  
  
'''(6)'''&nbsp; Aus der Bedingung $\underline{e} \cdot \mathbf{H}^{\rm T} = \underline{s}^{\rm T}$ folgt
+
'''(6)'''&nbsp; From the condition &nbsp; $\underline{e} \cdot \mathbf{H}^{\rm T} = \underline{s}^{\rm T}$ &nbsp; follows
 
:$$(0, e_1, 0, 0, 0, 0, 0) \cdot
 
:$$(0, e_1, 0, 0, 0, 0, 0) \cdot
 
\begin{pmatrix}
 
\begin{pmatrix}
Line 133: Line 134:
 
e_1 \cdot \alpha^3 = \alpha^6\hspace{0.05cm}. $$
 
e_1 \cdot \alpha^3 = \alpha^6\hspace{0.05cm}. $$
  
*Die Lösung führt stets zum Ergebnis $e_1 = \alpha^3$ &nbsp;&#8658;&nbsp; <u>Antwort 2</u>.  
+
*The solution always leads to the result&nbsp; $e_1 = \alpha^3$ &nbsp; &#8658; &nbsp; <u>Answer 2</u>.
*Mit dem Empfangswort $\underline{y} = (\alpha^1, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha^1, \, 0)$ erhält man das Decodierergebnis $\underline{z} = (\alpha^1, \, \alpha^3, \, \alpha^3, \, 0, \, 1, \, \alpha^1, \, 0)$.
+
 +
*With the received word &nbsp; $\underline{y} = (\alpha^1, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha^1, \, 0)$, &nbsp; the decoding result is&nbsp; $\underline{z} = (\alpha^1, \, \alpha^3, \, \alpha^3, \, 0, \, 1, \, \alpha^1, \, 0)$.
  
  
  
'''(7)'''&nbsp; Analog zur Teilaufgabe '''(4)''' lautet nun das Gleichungssystem:
+
'''(7)'''&nbsp; Analogous to the subtask&nbsp; '''(4)''',&nbsp; the system of equations is now:
 
:$$\lambda_0  \cdot \alpha^2 + \alpha^4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} \lambda_0  = \alpha^2 \hspace{0.05cm},$$
 
:$$\lambda_0  \cdot \alpha^2 + \alpha^4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} \lambda_0  = \alpha^2 \hspace{0.05cm},$$
 
:$$\lambda_0  \cdot \alpha^4 + \alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0  \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} \lambda_0  = \alpha \hspace{0.05cm}.$$
 
:$$\lambda_0  \cdot \alpha^4 + \alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0  \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} \lambda_0  = \alpha \hspace{0.05cm}.$$
  
*Die beiden Lösungen widersprechen sich. Bei der Übertragung sind mindestens zwei Symbole verfälscht worden. Die Decodierung versagt &nbsp; &#8658; &nbsp; Antwort <u>NEIN</u>.  
+
*The two solutions contradict each other.&nbsp; At least two symbols have been falsified during transmission.&nbsp; The decoding fails &nbsp; &#8658; &nbsp; Answer <u>NO</u>.
*Man müsste nun einen neuen Versuch gemäß dem roten Schema $(r = 2)$ starten.
+
 +
*You would now have to start a new attempt according to the red scheme&nbsp; $(r = 2)$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 17:29, 23 January 2023

ELP assignment schemes for  $r = 1, \ r = 2, \ r = 3$

We analyze the Peterson algorithm detailed in the section  "Procedure for Bounded Distance Decoding".  Assumed is the Reed–Solomon code with parameters  $n = 7, \ k = 4$  and  $d_{\rm min} = 4$,  where all code symbols come from  $\rm GF(2^3)$  and all arithmetic operations are consequently to be performed in  $\rm GF(2^3)$  as well.

The parity-check matrix of this code is:

$${ \boldsymbol{\rm H}} = \begin{pmatrix} 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^{5} & \alpha^{1} & \alpha^{4} \end{pmatrix} \hspace{0.05cm}.$$
  1. In  "Step  $\rm (A)$"  of the decoding algorithm considered here,  the syndrome  $\underline{s} = \underline{y} \cdot \mathbf{H}^{\rm T}$  must be computed. 
  2. For the received word   $\underline{y} = (\alpha^1, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha, \, 0)$,  the syndrome results in  $\underline{s} = (\alpha^4, \, \alpha^5, \, \alpha^6)$,  as in the  Exercise 2.12Z  yet to be shown.
  3. After that the  "ELP coefficient vectors"  be set up and evaluated according to the adjacent figure,  where the assignment depends on whether one assumes   $r = 1, \ r = 2$  or  $r = 3$  symbol errors in the received word. 
  4. If all equations  ${\it \underline{\Lambda}}_l \cdot \underline{s}^{\rm T} = 0$  are satisfied for the assumed symbol error count  $r$, then the received word  $\underline{y}$  actually has exactly $r$ symbol errors.



Hints:

  • "ELP" stands for  "Error Locator Polynomial".
  • You can take the further steps from the theory part:



Questions

1

Which occupancy schemes are relevant for this exercise?

The blue highlighted schema  $(r = 1)$.
The red highlighted schema  $(r = 2)$.
The green highlighted schema  $(r = 3)$.

2

What is the length  $L$  of the ELP coefficient vectors  ${\it \underline{\Lambda}}_l$?

$L \ = \ $

3

How many such vectors  ${\it \underline{\Lambda}}_l$  with index  $l = 1, \ ... \ , \ l_{\rm max}$  are there?

$l_{\rm max} \ = \ $

4

The syndrome results in  $\underline{s} = (\alpha^4, \, \alpha^5, \, \alpha^6)$.  Is the decoding successful?

YES.
NO.

5

Which symbol was falsified?

The symbol  "0",
the symbol  "1",
the symbol  "6".

6

Specify the value of the falsified symbol  $e_i ≠ 0$.

$e_i = \alpha^2$,
$e_i = \alpha^3$,
$e_i = 1$.

7

The syndrome be now   $\underline{s} = (\alpha^2, \, \alpha^4, \, \alpha^5)$.  Does this make the decoding successful?

YES.
NO.


Solution

(1)  Correct is the  proposed solution 1:

  • The considered Reed–Solomon code  $(7, \, 4, \, 4)_8$  can only correct  $t = ⌊(d_{\rm min} - 1)/2⌋ = 1$  symbol errors because of  $d_{\rm min} = 4$.
  • So only the scheme with blue background is relevant,  which is valid for the case that there is exactly one symbol error in the received words  $(r = 1)$.


(2)  According to the graph on the specification page,  the vector  ${\it \underline{\Lambda}}_l$  here has  $L = n - k \ \underline{= 3}$  elements.


(3)  There are only the two ELP coefficient vectors  ${\it \underline{\Lambda}}_1 = (\lambda_0, \, 1, \, 0)$,  ${\it \underline{\Lambda}}_2 = (0, \, \lambda_0, \, 1) \ \Rightarrow \ l_{\rm max} \ \underline{= 2}$.


(4)  From ${\it \underline{\Lambda}}_1$ and ${\it \underline{\Lambda}}_2$ we get two scalar equations of determination   ⇒   ${\it \underline{\Lambda}}_l \cdot \underline{s}^{\rm T} = 0$  for the parameter  $\lambda_0$:

$$\lambda_0 \cdot \alpha^4 + \alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda_0 \cdot \alpha^4 = -\alpha^5 = \alpha^5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda_0 = \alpha \hspace{0.05cm},$$
$$\lambda_0 \cdot \alpha^5 + \alpha^6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda_0 = \alpha \hspace{0.05cm}.$$

The equation system is uniquely solvable   ⇒   Answer YES.


(5)  Using the result of subtask  (4)   ⇒   $\lambda_0 = \alpha$,  we obtain for the error locator polynomial:

$${\it \Lambda}(x)=x \cdot \big ({\it \lambda}_0 + x \big ) =x \cdot \big (\alpha + x )$$
$$\Rightarrow \hspace{0.3cm} {\it \Lambda}(\alpha^0 )\hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 \cdot \big ( \alpha + 1 \big ) = \alpha + 1 \ne 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm No\hspace{0.15cm} zeros}\hspace{0.05cm},$$
$$\hspace{0.875cm} {\it \Lambda}(\alpha^1)\hspace{-0.15cm} \ = \ \hspace{-0.15cm}\alpha \cdot \big (\alpha + \alpha\big ) = 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{ \boldsymbol{\rm Zeros}}\hspace{0.05cm}.$$
  • So the symbol at position 1 was falsified  ⇒  Solution suggestion 2.
  • Since the calculation in subtask  (4)  was done under the condition  $r = 1$,  all other symbols were transferred correctly:
$\rm GF(2^3)$  representation as powers, polynomials, vectors
$$\underline {e} = (0, e_1, 0, 0, 0, 0, 0)\hspace{0.05cm}. $$


(6)  From the condition   $\underline{e} \cdot \mathbf{H}^{\rm T} = \underline{s}^{\rm T}$   follows

$$(0, e_1, 0, 0, 0, 0, 0) \cdot \begin{pmatrix} 1 & 1 & 1 \\ \alpha^1 & \alpha^2 & \alpha^3 \\ \alpha^2 & \alpha^4 & \alpha^6 \\ \alpha^3 & \alpha^6 & \alpha^9 \\ \alpha^4 & \alpha^8 & \alpha^{12} \\ \alpha^5 & \alpha^{10} & \alpha^{15} \\ \alpha^6 & \alpha^{12} & \alpha^{18} \end{pmatrix} \hspace{0.15cm}\stackrel{!}{=} \hspace{0.15cm} \begin{pmatrix} \alpha^4\\ \alpha^5\\ \alpha^6 \end{pmatrix} $$
$$\Rightarrow \hspace{0.3cm} e_1 \cdot \alpha = \alpha^4\hspace{0.05cm},\hspace{0.4cm} e_1 \cdot \alpha^2 = \alpha^5\hspace{0.05cm},\hspace{0.4cm} e_1 \cdot \alpha^3 = \alpha^6\hspace{0.05cm}. $$
  • The solution always leads to the result  $e_1 = \alpha^3$   ⇒   Answer 2.
  • With the received word   $\underline{y} = (\alpha^1, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha^1, \, 0)$,   the decoding result is  $\underline{z} = (\alpha^1, \, \alpha^3, \, \alpha^3, \, 0, \, 1, \, \alpha^1, \, 0)$.


(7)  Analogous to the subtask  (4),  the system of equations is now:

$$\lambda_0 \cdot \alpha^2 + \alpha^4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda_0 = \alpha^2 \hspace{0.05cm},$$
$$\lambda_0 \cdot \alpha^4 + \alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda_0 = \alpha \hspace{0.05cm}.$$
  • The two solutions contradict each other.  At least two symbols have been falsified during transmission.  The decoding fails   ⇒   Answer NO.
  • You would now have to start a new attempt according to the red scheme  $(r = 2)$.