Difference between revisions of "Aufgaben:Exercise 2.12: Decoding at RSC (7, 4, 4) to Base 8"

From LNTwww
Line 2: Line 2:
  
 
[[File:P_ID2553__KC_A_2_12_neu.png|right|frame|ELP assignment schemes for  $r = 1, \ r = 2, \ r = 3$]]
 
[[File:P_ID2553__KC_A_2_12_neu.png|right|frame|ELP assignment schemes for  $r = 1, \ r = 2, \ r = 3$]]
We analyze the Peterson algorithm detailed in the section  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding#Step_.28A.29:_Evaluation_of_the_syndrome_in_BDD| "Procedure for "Bounded Distance Decoding""]]  . Assumed is the Reed–Solomon code with parameters  $n = 7, \ k = 4$  and  $d_{\rm min} = 4$, where all code symbols come from  $\rm GF(2^3)$  and all arithmetic operations are consequently to be performed in  $\rm GF(2^3)$  as well.
+
We analyze the Peterson algorithm detailed in the section  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding#Step_.28A.29:_Evaluation_of_the_syndrome_in_BDD| "Procedure for Bounded Distance Decoding"]].  Assumed is the Reed–Solomon code with parameters  $n = 7, \ k = 4$  and  $d_{\rm min} = 4$,  where all code symbols come from  $\rm GF(2^3)$  and all arithmetic operations are consequently to be performed in  $\rm GF(2^3)$  as well.
  
 
The parity-check matrix of this code is:
 
The parity-check matrix of this code is:
Line 12: Line 12:
 
\end{pmatrix} \hspace{0.05cm}.$$
 
\end{pmatrix} \hspace{0.05cm}.$$
  
In  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding#Step_.28A.29:_Evaluation_of_the_syndrome_in_BDD|"Step  $\rm (A)$"]]  the decoding algorithm considered here, the syndrome  $\underline{s} = \underline{y} \cdot \mathbf{H}^{\rm T}$  must be computed. For the received word assumed here  $\underline{y} = (\alpha^1, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha, \, 0)$  the syndrome results in  $\underline{s} = (\alpha^4, \, \alpha^5, \, \alpha^6)$, as in the  [[Aufgaben:Exercise_2.12Z:_Reed-Solomon_Syndrome_Calculation|"Exercise 2.12Z"]]  yet to be shown.  
+
# In  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding#Step_.28A.29:_Evaluation_of_the_syndrome_in_BDD|"Step  $\rm (A)$"]]  of the decoding algorithm considered here,  the syndrome  $\underline{s} = \underline{y} \cdot \mathbf{H}^{\rm T}$  must be computed. 
 
+
# For the received word   $\underline{y} = (\alpha^1, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha, \, 0)$,  the syndrome results in  $\underline{s} = (\alpha^4, \, \alpha^5, \, \alpha^6)$,  as in the  [[Aufgaben:Exercise_2.12Z:_Reed-Solomon_Syndrome_Calculation|Exercise 2.12Z]]  yet to be shown.  
After that the  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding#Step_.28D.29 :_Final_error_correction|"ELP coefficient vectors"]]  be set up and evaluated according to the adjacent figure, where the assignment depends on whether one assumes  $r = 1, \ r = 2$  or  $r = 3$  symbol errors in the received word. "ELP" stands for ''Error Locator Polynomial''.
+
# After that the  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding#Step_.28D.29 :_Final_error_correction|"ELP coefficient vectors"]]  be set up and evaluated according to the adjacent figure,  where the assignment depends on whether one assumes   $r = 1, \ r = 2$  or  $r = 3$  symbol errors in the received word. 
 
+
# If all equations  ${\it \underline{\Lambda}}_l \cdot \underline{s}^{\rm T} = 0$  are satisfied for the assumed symbol error count  $r$, then the received word  $\underline{y}$  actually has exactly $r$ symbol errors.
If all equations  ${\it \underline{\Lambda}}_l \cdot \underline{s}^{\rm T} = 0$  are satisfied for the assumed symbol error count  $r$, then the received word  $\underline{y}$  actually has exactly $r$ symbol errors.
 
  
 
You can take the further steps from the theory part:
 
You can take the further steps from the theory part:
Line 29: Line 28:
 
Hints:
 
Hints:
 
* The exercise refers to the chapter  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding| "Error correction according to Reed–Solomon coding"]].
 
* The exercise refers to the chapter  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding| "Error correction according to Reed–Solomon coding"]].
 +
 +
*"ELP" stands for  "Error Locator Polynomial".
  
  

Revision as of 12:57, 29 October 2022

ELP assignment schemes for  $r = 1, \ r = 2, \ r = 3$

We analyze the Peterson algorithm detailed in the section  "Procedure for Bounded Distance Decoding".  Assumed is the Reed–Solomon code with parameters  $n = 7, \ k = 4$  and  $d_{\rm min} = 4$,  where all code symbols come from  $\rm GF(2^3)$  and all arithmetic operations are consequently to be performed in  $\rm GF(2^3)$  as well.

The parity-check matrix of this code is:

$${ \boldsymbol{\rm H}} = \begin{pmatrix} 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^{5} & \alpha^{1} & \alpha^{4} \end{pmatrix} \hspace{0.05cm}.$$
  1. In  "Step  $\rm (A)$"  of the decoding algorithm considered here,  the syndrome  $\underline{s} = \underline{y} \cdot \mathbf{H}^{\rm T}$  must be computed. 
  2. For the received word   $\underline{y} = (\alpha^1, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha, \, 0)$,  the syndrome results in  $\underline{s} = (\alpha^4, \, \alpha^5, \, \alpha^6)$,  as in the  Exercise 2.12Z  yet to be shown.
  3. After that the  "ELP coefficient vectors"  be set up and evaluated according to the adjacent figure,  where the assignment depends on whether one assumes   $r = 1, \ r = 2$  or  $r = 3$  symbol errors in the received word. 
  4. If all equations  ${\it \underline{\Lambda}}_l \cdot \underline{s}^{\rm T} = 0$  are satisfied for the assumed symbol error count  $r$, then the received word  $\underline{y}$  actually has exactly $r$ symbol errors.

You can take the further steps from the theory part:




Hints:

  • "ELP" stands for  "Error Locator Polynomial".



Questions

1

Which occupancy schemes are relevant for this exercise?

The blue highlighted schema  $(r = 1)$.
The red highlighted schema  $(r = 2)$.
The green highlighted schema  $(r = 3)$.

2

What is the length  $L$  of the ELP coefficient vectors  ${\it \underline{\Lambda}}_l$?

$L \ = \ $

3

How many such vectors  ${\it \underline{\Lambda}}_l$  with index  $l = 1, \ ... \ , \ l_{\rm max}$  are there?

$l_{\rm max} \ = \ $

4

The syndrome results in  $\underline{s} = (\alpha^4, \, \alpha^5, \, \alpha^6)$. Is the decoding successful?

YES.
NO.

5

Which symbol was corrupted?

The symbol 0,
the symbol 1,
the symbol 6.

6

Specify the value of the corrupted symbol  $e_i ≠ 0$ .

$e_i = \alpha^2$,
$e_i = \alpha^3$,
$e_i = 1$.

7

The syndrome now be  $\underline{s} = (\alpha^2, \, \alpha^4, \, \alpha^5)$. Does this make the decoding successful?

YES.
NO.


Solution

(1)  Correct is the proposed solution 1:

  • The considered Reed–Solomon code $(7, \, 4, \, 4)_8$ can correct only $t = ⌊(d_{\rm min} - 1)/2⌋ = 1$ symbol errors because of $d_{\rm min} = 4$.
  • So only the scheme with blue background is relevant, which is valid for the case that there is exactly one symbol error in the received words $(r = 1)$.


(2)  According to the graph on the specification page, the vector ${\it \underline{\Lambda}}_l$ here has $L = n - k \ \underline{= 3}$ elements.


(3)  There are only the two ELP coefficient vectors. ${\it \underline{\Lambda}}_1 = (\lambda_0, \, 1, \, 0)$ und ${\it \underline{\Lambda}}_2 = (0, \, \lambda_0, \, 1) \ \Rightarrow \ l_{\rm max} \ \underline{= 2}$.


(4)  From ${\it \underline{\Lambda}}_1$ and ${\it \underline{\Lambda}}_2$ we get two scalar equations of determination ${\it \underline{\Lambda}}_l \cdot \underline{s}^{\rm T} = 0$ for the parameter $\lambda_0$:

$$\lambda_0 \cdot \alpha^4 + \alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda_0 \cdot \alpha^4 = -\alpha^5 = \alpha^5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda_0 = \alpha \hspace{0.05cm},$$
$$\lambda_0 \cdot \alpha^5 + \alpha^6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda_0 = \alpha \hspace{0.05cm}.$$

The system of equations is uniquely solvable   ⇒   Answer YES.


(5)  Using the result of subtask (4)   ⇒   $\lambda_0 = \alpha$, we obtain for the error locator polynomial.

$${\it \Lambda}(x)=x \cdot \big ({\it \lambda}_0 + x \big ) =x \cdot \big (\alpha + x )$$
$$\Rightarrow \hspace{0.3cm} {\it \Lambda}(\alpha^0 )\hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 \cdot \big ( \alpha + 1 \big ) = \alpha + 1 \ne 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm No\hspace{0.15cm} zeros}\hspace{0.05cm},$$
$$\hspace{0.875cm} {\it \Lambda}(\alpha^1)\hspace{-0.15cm} \ = \ \hspace{-0.15cm}\alpha \cdot \big (\alpha + \alpha\big ) = 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{ \boldsymbol{\rm Zeros}}\hspace{0.05cm}.$$
  • So the symbol at position 1 was falsified  ⇒  Solution suggestion 2.
  • Since the calculation in subtask (4) was done under the condition $r = 1$, all other symbols were transferred correctly:
Conversion tables for the Galois field $\rm GF(2^3)$
$$\underline {e} = (0, e_1, 0, 0, 0, 0, 0)\hspace{0.05cm}. $$


(6)  From the condition $\underline{e} \cdot \mathbf{H}^{\rm T} = \underline{s}^{\rm T}$ follows

$$(0, e_1, 0, 0, 0, 0, 0) \cdot \begin{pmatrix} 1 & 1 & 1 \\ \alpha^1 & \alpha^2 & \alpha^3 \\ \alpha^2 & \alpha^4 & \alpha^6 \\ \alpha^3 & \alpha^6 & \alpha^9 \\ \alpha^4 & \alpha^8 & \alpha^{12} \\ \alpha^5 & \alpha^{10} & \alpha^{15} \\ \alpha^6 & \alpha^{12} & \alpha^{18} \end{pmatrix} \hspace{0.15cm}\stackrel{!}{=} \hspace{0.15cm} \begin{pmatrix} \alpha^4\\ \alpha^5\\ \alpha^6 \end{pmatrix} $$
$$\Rightarrow \hspace{0.3cm} e_1 \cdot \alpha = \alpha^4\hspace{0.05cm},\hspace{0.4cm} e_1 \cdot \alpha^2 = \alpha^5\hspace{0.05cm},\hspace{0.4cm} e_1 \cdot \alpha^3 = \alpha^6\hspace{0.05cm}. $$
  • The solution always leads to the result $e_1 = \alpha^3$  ⇒  Answer 2.
  • With the received word $\underline{y} = (\alpha^1, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha^1, \, 0)$, the decoding result $\underline{z} = (\alpha^1, \, \alpha^3, \, \alpha^3, \, 0, \, 1, \, \alpha^1, \, 0)$.


(7)  Analogous to the subtask (4), the system of equations is now:

$$\lambda_0 \cdot \alpha^2 + \alpha^4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda_0 = \alpha^2 \hspace{0.05cm},$$
$$\lambda_0 \cdot \alpha^4 + \alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda_0 = \alpha \hspace{0.05cm}.$$
  • The two solutions contradict each other. At least two symbols have been corrupted during transmission. The decoding fails   ⇒   Answer NO.
  • You would now have to start a new attempt according to the red scheme $(r = 2)$.