Difference between revisions of "Aufgaben:Exercise 2.1: DSB-AM with Cosine? Or with Sine?"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Modulationsverfahren" to "Category:Modulation Methods: Exercises")
m
 
(10 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Zweiseitenband-Amplitudenmodulation
+
{{quiz-Header|Buchseite=Modulation_Methods/Double-Sideband_Amplitude_Modulation
 
}}
 
}}
  
[[File:P_ID985__Mod_A_2_1.png|right|frame|Spektrum: Analytischen Signal]]
+
[[File:P_ID985__Mod_A_2_1.png|right|frame|Spectrum of the analytical signal]]
Wir betrachten die Amplitudenmodulation des Quellensignals  $q(t)$  mit dem Trägersignal  $z(t)$.  Diese Signale sind wie folgt gegeben:
+
Let us consider the amplitude modulation of the source signal  $q(t)$  with the carrier signal  $z(t)$. These signals are given by:
 
:$$q(t)  =  A_{\rm N} \cdot \cos(2 \pi f_{\rm N} t + \phi_{\rm N})\hspace{0.05cm},$$
 
:$$q(t)  =  A_{\rm N} \cdot \cos(2 \pi f_{\rm N} t + \phi_{\rm N})\hspace{0.05cm},$$
 
:$$z(t)  =  \hspace{0.15cm}1 \hspace{0.13cm} \cdot \hspace{0.1cm}\cos(2 \pi f_{\rm T} t + \phi_{\rm T})\hspace{0.05cm}.$$
 
:$$z(t)  =  \hspace{0.15cm}1 \hspace{0.13cm} \cdot \hspace{0.1cm}\cos(2 \pi f_{\rm T} t + \phi_{\rm T})\hspace{0.05cm}.$$
Bekannt ist die Trägerfrequenz mit  $f_{\rm T} = 40\text{ kHz}$.  Die weiteren Systemparameter  $A_{\rm N}$,  $f_{\rm N}$,  $ϕ_{\rm N}$  und  $ϕ_{\rm T}$  sollen in dieser Aufgabe ermittelt werden.
+
The carrier frequency is known to be $f_{\rm T} = 40\text{ kHz}$.  The other system parameters  $A_{\rm N}$,  $f_{\rm N}$,  $ϕ_{\rm N}$  and  $ϕ_{\rm T}$  are to be determined in this exercise. 
  
Gegeben ist weiter das Spektrum  $S_+(f)$  des analytischen Signals  $s_+(t)$  am Ausgang des Modulators.  Dieses lautet (siehe Grafik):
+
*The subscript  "N"  refers to the message signal  (German:  "Nachrichtensignal")  $q(t)$ 
:$$S_+(f) = {\rm j}\cdot 2\,{\rm V} \cdot \delta ( f - f_{30} )+ {\rm j}\cdot 2\,{\rm V} \cdot \delta ( f - f_{50} )\hspace{0.05cm}.$$
+
*and  "T" to the carrier  (German:  "Trägersignal")  $z(t)$.  
Hierbei sind die Abkürzungen $f_{30} = 30\text{ kHz}$ und $f_{50} = 50\text{ kHz}$ verwendet.
 
 
 
Zur Erinnerung:   Das Spektrum  $S_+(f)$  erhält man aus  $S(f)$, indem man
 
*die Anteile bei negativen Frequenzen abschneidet und
 
*bei positiven Frequenzen verdoppelt.
 
  
  
 +
The spectrum  $S_+(f)$  of the analytical signal  $s_+(t)$  at the modulator output is also given (see graph):
 +
:$$S_+(f) = {\rm j}\cdot 2\,{\rm V} \cdot \delta ( f - f_{30} )+ {\rm j}\cdot 2\,{\rm V} \cdot \delta ( f - f_{50} )\hspace{0.05cm}.$$
 +
Here,  the abbreviations  $f_{30} = 30\text{ kHz}$  and  $f_{50} = 50\text{ kHz}$  are used.
  
 +
As a reminder:  The spectrum  $S_+(f)$  is obtained from  $S(f)$ by
 +
*truncating the components at negative frequencies and
 +
*doubling positive frequencies.
  
  
Line 24: Line 25:
  
  
''Hinweise:''
+
Hints:  
*Die Aufgabe gehört zum  Kapitel  [[Modulation_Methods/Zweiseitenband-Amplitudenmodulation|Zweiseitenband-Amplitudenmodulation]].
+
*This exercise belongs to the chapter  [[Modulation_Methods/Double-Sideband_Amplitude_Modulation|Double-Sideband Amplitude Modulation]].
*Bezug genommen wird insbesondere auf die Seiten   [[Modulation_Methods/Zweiseitenband-Amplitudenmodulation#Beschreibung_im_Frequenzbereich|Beschreibung im Frequenzbereich]]  und  [[Modulation_Methods/Zweiseitenband-Amplitudenmodulation#Beschreibung_im_Zeitbereich|Beschreibung im Zeitbereich]].
+
*Particular reference will be made to the pages  [[Modulation_Methods/Double-Sideband_Amplitude_Modulation#Description_in_the_frequency_domain|Description in the frequency domain]]  and  [[Modulation_Methods/Double-Sideband_Amplitude_Modulation#Description_in_the_time_domain|Description in the time domain]].
*Gegeben sind folgende trigonometrischen Zusammenhänge:
+
*The following trigonometric identities are given:
 
:$$\cos(\alpha)\cdot \cos(\beta)  =  {1}/{2} \cdot \big[ \cos(\alpha-\beta) + \cos(\alpha+\beta)\big ] \hspace{0.05cm}, \hspace{0.5cm} \cos(90^{\circ}- \hspace{0.05cm} \alpha)  =  \sin(\alpha) \hspace{0.05cm}, \hspace{0.5cm}  \cos(90^{\circ}+ \hspace{0.05cm} \alpha)  =  -\sin(\alpha) \hspace{0.05cm}.$$
 
:$$\cos(\alpha)\cdot \cos(\beta)  =  {1}/{2} \cdot \big[ \cos(\alpha-\beta) + \cos(\alpha+\beta)\big ] \hspace{0.05cm}, \hspace{0.5cm} \cos(90^{\circ}- \hspace{0.05cm} \alpha)  =  \sin(\alpha) \hspace{0.05cm}, \hspace{0.5cm}  \cos(90^{\circ}+ \hspace{0.05cm} \alpha)  =  -\sin(\alpha) \hspace{0.05cm}.$$
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Ermitteln Sie das Spektrum &nbsp;$S(f)$.&nbsp; Welche der folgenden Aussagen sind richtig?
+
{Find the spectrum &nbsp;$S(f)$.&nbsp; Which of the following statements are correct?
 
|type="[]"}
 
|type="[]"}
+ $S(f)$&nbsp; besteht aus vier Diracfunktionen.
+
+ $S(f)$&nbsp; consists of four Dirac delta functions.
- Alle Diracgewichte haben den gleichen Betrag $2\text{ V}$.
+
- All Dirac weights have the same magnitude&nbsp; $2\text{ V}$.
+ Alle Diracgewichte sind imaginär.
+
+ All Dirac weights are imaginary.
  
 
   
 
   
{Wie lautet das modulierte Signal &nbsp;$s(t)$?&nbsp; Welche Aussage trifft zu?
+
{What is the modulated signal &nbsp;$s(t)$?&nbsp; Which statement is true?
 
|type="()"}
 
|type="()"}
+ Es handelt sich um ZSB–AM ohne Träger.
+
+ It is DSB-AM without carrier &nbsp; &rArr; &nbsp; "DSB-AM with carrier suppression".
- Es handelt sich um ZSB–AM mit Träger.
+
- It is DSB-AM with carrier.
  
{Geben Sie die Nachrichtenfrequenz $f_{\rm N}$&nbsp; an.
+
{State the message signal frequency $f_{\rm N}$.
 
|type="{}"}
 
|type="{}"}
 
$f_{\rm N} \ = \ $ { 10 3% } $\ \text{kHz}$
 
$f_{\rm N} \ = \ $ { 10 3% } $\ \text{kHz}$
  
{Bestimmen Sie die Phasen von Quellen– und Trägersignal.
+
{Determine the phases of the two signals.
 
|type="{}"}
 
|type="{}"}
$ϕ_{\rm N} \ = \ $ { 0. } $\ \text{Grad}$
+
$ϕ_{\rm N} \ = \ $ { 0. } $\ \text{degrees}$
$ϕ_{\rm T} \ = \ $ { 90 }  $\ \text{Grad}$
+
$ϕ_{\rm T} \ = \ $ { 90 }  $\ \text{degrees}$
  
{Wie groß ist die Amplitude des Nachrichtensignals?
+
{What is the amplitude of the message signal?
 
|type="{}"}
 
|type="{}"}
 
$A_{\rm N} \ = \ $ { 4 3% } $\ \text{V}$
 
$A_{\rm N} \ = \ $ { 4 3% } $\ \text{V}$
Line 63: Line 64:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>Antworten 1 und 3</u>:
+
'''(1)'''&nbsp; <u>Answers 1 and 3</u>&nbsp; are correct:
*Bei positiven Frequenzen erhält man&nbsp; $S_+(f)$&nbsp; aus&nbsp; $S(f)$&nbsp; durch Verdoppelung.  
+
*At positive frequencies,&nbsp; $S_+(f)$&nbsp; is obtained from&nbsp; $S(f)$&nbsp; by doubling.  
*Daraus folgt, dass die Impulsgewichte von&nbsp; $S(f)$&nbsp; nur jeweils&nbsp; ${\rm j} · 1 \text{ V}$&nbsp; sind.  
+
*It follows that the impulse weights of&nbsp; $S(f)$&nbsp; are each only &nbsp; ${\rm j} · 1 \text{ V}$.  
*Aufgrund des Zuordnungssatzes muss&nbsp; $S(f)$&nbsp; eine ungerade Funktion sein.  
+
*Because of the Assignment Theorem,&nbsp; $S(f)$&nbsp; must be an odd function.  
*Deshalb besitzt&nbsp; $S(f)$&nbsp; noch zwei weitere Diracfunktionen bei $f = -f_{30}$&nbsp; und $f = -f_{50}$, jeweils mit dem Gewicht&nbsp; $-{\rm j} · 1 \text{ V}$:
+
*Therefore,&nbsp; $S(f)$&nbsp; has two more Dirac delta functions at $f = -f_{30}$&nbsp; and $f = -f_{50}$,&nbsp; each with weight&nbsp; $-{\rm j} · 1 \text{ V}$:
 
:$$S(f) = 1\,{\rm V} \cdot \big[ {\rm j}\cdot \delta ( f - f_{30} )-{\rm j} \cdot \delta ( f + f_{30} )+ {\rm j} \cdot \delta ( f - f_{50} )-{\rm j} \cdot \delta ( f + f_{50} )\big] \hspace{0.05cm}.$$
 
:$$S(f) = 1\,{\rm V} \cdot \big[ {\rm j}\cdot \delta ( f - f_{30} )-{\rm j} \cdot \delta ( f + f_{30} )+ {\rm j} \cdot \delta ( f - f_{50} )-{\rm j} \cdot \delta ( f + f_{50} )\big] \hspace{0.05cm}.$$
  
  
  
'''(2)'''&nbsp; Die Fourierrücktransformation von&nbsp; $S(f)$&nbsp; führt mit&nbsp; $ω_{30} = 2π · f_{30}$&nbsp; und&nbsp; $ω_{50} = 2πf_{50}$&nbsp;  zu folgendem Signal:
+
'''(2)'''&nbsp; The inverse Fourier transform of &nbsp; $S(f)$&nbsp; with&nbsp; $ω_{30} = 2π · f_{30}$&nbsp; and&nbsp; $ω_{50} = 2πf_{50}$&nbsp;  leads to the following signal:
 
:$$ s(t) = -2\,{\rm V} \cdot \sin(\omega_{\rm 30} t )-2\,{\rm V} \cdot \sin(\omega_{\rm 50} t )\hspace{0.05cm}.$$
 
:$$ s(t) = -2\,{\rm V} \cdot \sin(\omega_{\rm 30} t )-2\,{\rm V} \cdot \sin(\omega_{\rm 50} t )\hspace{0.05cm}.$$
*Dieser enthält keinen Anteil bei der Trägerfrequenz $f_{\rm T} = 40\text{ kHz}$, so dass die <u>erste Aussage</u> zutrifft.
+
*This does not contain any component at the carrier frequency $f_{\rm T} = 40\text{ kHz}$,&nbsp; so the&nbsp; <u>first statement</u>&nbsp;  is true.
  
  
  
'''(3)'''&nbsp; Bei ZSB–AM ohne Träger beinhaltet&nbsp; $s(t)$&nbsp; nur die beiden Frequenzen $f_{\rm T} – f_{\rm N}$&nbsp; und&nbsp; $f_{\rm T} + f_{\rm N}$.  
+
'''(3)'''&nbsp; For DSB–AM without carrier, &nbsp; $s(t)$&nbsp; includes only the two frequencies  $f_{\rm T} – f_{\rm N}$&nbsp; and&nbsp; $f_{\rm T} + f_{\rm N}$.  
*Daraus folgt mit $f_{\rm T} = 40\text{ kHz}$&nbsp; für die Nachrichtenfrequenz: &nbsp; $f_{\rm N} \hspace{0.05cm}\underline {= 10\ \rm  kHz}.$
+
*Hence,&nbsp; with $f_{\rm T} = 40\text{ kHz}$&nbsp; for the message frequency,&nbsp; it follows that &nbsp; $f_{\rm N} \hspace{0.05cm}\underline {= 10\ \rm  kHz}.$
  
  
  
'''(4)'''&nbsp; Bei ZSB–AM ohne Träger gilt:
+
'''(4)'''&nbsp; For DSB–AM without carrier,&nbsp; it holds that:
 
:$$s(t)  =  q(t) \cdot z(t) = A_{\rm N} \cdot \cos(\omega_{\rm N} t + \phi_{\rm N})\cdot \cos(\omega_{\rm T} t + \phi_{\rm T})$$
 
:$$s(t)  =  q(t) \cdot z(t) = A_{\rm N} \cdot \cos(\omega_{\rm N} t + \phi_{\rm N})\cdot \cos(\omega_{\rm T} t + \phi_{\rm T})$$
 
:$$\Rightarrow \hspace{0.5cm} s(t) =  \frac{A_{\rm N}}{2} \cdot \left[ \cos\left((\omega_{\rm T} +\omega_{\rm N})\cdot t + \phi_{\rm T}+ \phi_{\rm N}\right) + \cos\left((\omega_{\rm T} -\omega_{\rm N})\cdot t + \phi_{\rm T}- \phi_{\rm N}\right) \right] \hspace{0.05cm}.$$
 
:$$\Rightarrow \hspace{0.5cm} s(t) =  \frac{A_{\rm N}}{2} \cdot \left[ \cos\left((\omega_{\rm T} +\omega_{\rm N})\cdot t + \phi_{\rm T}+ \phi_{\rm N}\right) + \cos\left((\omega_{\rm T} -\omega_{\rm N})\cdot t + \phi_{\rm T}- \phi_{\rm N}\right) \right] \hspace{0.05cm}.$$
*Ein Vergleich mit dem Ergebnis der Teilaufgabe&nbsp; '''(2)'''&nbsp; zeigt, dass gelten muss:
+
*A comparison with the result from subtask&nbsp; '''(2)'''&nbsp; shows that:
 
:$$\cos(\omega_{\rm 30} \cdot t + \phi_{\rm T}- \phi_{\rm N})  =  -\sin(\omega_{\rm 30} \cdot t )\hspace{0.05cm},$$  
 
:$$\cos(\omega_{\rm 30} \cdot t + \phi_{\rm T}- \phi_{\rm N})  =  -\sin(\omega_{\rm 30} \cdot t )\hspace{0.05cm},$$  
 
:$$\cos(\omega_{\rm 50} \cdot t + \phi_{\rm T}+ \phi_{\rm N})  =  -\sin(\omega_{\rm 50} \cdot t ) \hspace{0.05cm}.$$
 
:$$\cos(\omega_{\rm 50} \cdot t + \phi_{\rm T}+ \phi_{\rm N})  =  -\sin(\omega_{\rm 50} \cdot t ) \hspace{0.05cm}.$$
*Beide Gleichungen sind gleichzeitig nur mit der Phase&nbsp; $ϕ_{\rm N} \hspace{0.05cm}\underline {= 0}$&nbsp; zu erfüllen.  
+
*Both equations can only be satisfied simultaneously with phase &nbsp; $ϕ_{\rm N} \hspace{0.05cm}\underline {= 0}$&nbsp;.  
*Aus der letzten angegebenen trigonometrischen Beziehung folgt außerdem&nbsp; $ϕ_{\rm T} \hspace{0.05cm}\underline {= 90^\circ} = π/2$.
+
*Additionally,&nbsp; from the last given trigonometric relation it follows that&nbsp; $ϕ_{\rm T} \hspace{0.05cm}\underline {= 90^\circ} = π/2$.
  
  
  
'''(5)'''&nbsp; Ein Vergleich der Ergebnisse aus&nbsp; '''(2)'''&nbsp; und&nbsp; '''(4)'''&nbsp; führt auf&nbsp; $A_{\rm N} \hspace{0.05cm}\underline {= 4 \ \rm V}$.&nbsp; Damit lauten die Gleichungen der an der Modulation beteiligten Signale:
+
'''(5)'''&nbsp; Comparing the results from subtasks&nbsp; '''(2)'''&nbsp; and&nbsp; '''(4)'''&nbsp; leads to&nbsp; $A_{\rm N} \hspace{0.05cm}\underline {= 4 \ \rm V}$.&nbsp; Thus,&nbsp; the equations of the signals involved in the modulation are:
 
:$$q(t )  =  4\,{\rm V} \cdot \cos (2 \pi \cdot 10\,{\rm kHz} \cdot t) \hspace{0.05cm},$$
 
:$$q(t )  =  4\,{\rm V} \cdot \cos (2 \pi \cdot 10\,{\rm kHz} \cdot t) \hspace{0.05cm},$$
 
:$$z(t)  =  1 \cdot \cos (2 \pi \cdot 40\,{\rm kHz} \cdot t + 90^{\circ}) = -\sin (2 \pi \cdot 40\,{\rm kHz} \cdot t )\hspace{0.05cm}.$$
 
:$$z(t)  =  1 \cdot \cos (2 \pi \cdot 40\,{\rm kHz} \cdot t + 90^{\circ}) = -\sin (2 \pi \cdot 40\,{\rm kHz} \cdot t )\hspace{0.05cm}.$$
Line 105: Line 106:
  
  
[[Category:Modulation Methods: Exercises|^2.1 ZSB-Amplitudenmodulation^]]
+
[[Category:Modulation Methods: Exercises|^2.1 Double Sideband Amplitude Modulation^]]

Latest revision as of 17:31, 24 March 2022

Spectrum of the analytical signal

Let us consider the amplitude modulation of the source signal  $q(t)$  with the carrier signal  $z(t)$. These signals are given by:

$$q(t) = A_{\rm N} \cdot \cos(2 \pi f_{\rm N} t + \phi_{\rm N})\hspace{0.05cm},$$
$$z(t) = \hspace{0.15cm}1 \hspace{0.13cm} \cdot \hspace{0.1cm}\cos(2 \pi f_{\rm T} t + \phi_{\rm T})\hspace{0.05cm}.$$

The carrier frequency is known to be $f_{\rm T} = 40\text{ kHz}$.  The other system parameters  $A_{\rm N}$,  $f_{\rm N}$,  $ϕ_{\rm N}$  and  $ϕ_{\rm T}$  are to be determined in this exercise. 

  • The subscript  "N"  refers to the message signal  (German:  "Nachrichtensignal")  $q(t)$ 
  • and  "T" to the carrier  (German:  "Trägersignal")  $z(t)$.


The spectrum  $S_+(f)$  of the analytical signal  $s_+(t)$  at the modulator output is also given (see graph):

$$S_+(f) = {\rm j}\cdot 2\,{\rm V} \cdot \delta ( f - f_{30} )+ {\rm j}\cdot 2\,{\rm V} \cdot \delta ( f - f_{50} )\hspace{0.05cm}.$$

Here,  the abbreviations  $f_{30} = 30\text{ kHz}$  and  $f_{50} = 50\text{ kHz}$  are used.

As a reminder:  The spectrum  $S_+(f)$  is obtained from  $S(f)$ by

  • truncating the components at negative frequencies and
  • doubling positive frequencies.



Hints:

$$\cos(\alpha)\cdot \cos(\beta) = {1}/{2} \cdot \big[ \cos(\alpha-\beta) + \cos(\alpha+\beta)\big ] \hspace{0.05cm}, \hspace{0.5cm} \cos(90^{\circ}- \hspace{0.05cm} \alpha) = \sin(\alpha) \hspace{0.05cm}, \hspace{0.5cm} \cos(90^{\circ}+ \hspace{0.05cm} \alpha) = -\sin(\alpha) \hspace{0.05cm}.$$


Questions

1

Find the spectrum  $S(f)$.  Which of the following statements are correct?

$S(f)$  consists of four Dirac delta functions.
All Dirac weights have the same magnitude  $2\text{ V}$.
All Dirac weights are imaginary.

2

What is the modulated signal  $s(t)$?  Which statement is true?

It is DSB-AM without carrier   ⇒   "DSB-AM with carrier suppression".
It is DSB-AM with carrier.

3

State the message signal frequency $f_{\rm N}$.

$f_{\rm N} \ = \ $

$\ \text{kHz}$

4

Determine the phases of the two signals.

$ϕ_{\rm N} \ = \ $

$\ \text{degrees}$
$ϕ_{\rm T} \ = \ $

$\ \text{degrees}$

5

What is the amplitude of the message signal?

$A_{\rm N} \ = \ $

$\ \text{V}$


Solution

(1)  Answers 1 and 3  are correct:

  • At positive frequencies,  $S_+(f)$  is obtained from  $S(f)$  by doubling.
  • It follows that the impulse weights of  $S(f)$  are each only   ${\rm j} · 1 \text{ V}$.
  • Because of the Assignment Theorem,  $S(f)$  must be an odd function.
  • Therefore,  $S(f)$  has two more Dirac delta functions at $f = -f_{30}$  and $f = -f_{50}$,  each with weight  $-{\rm j} · 1 \text{ V}$:
$$S(f) = 1\,{\rm V} \cdot \big[ {\rm j}\cdot \delta ( f - f_{30} )-{\rm j} \cdot \delta ( f + f_{30} )+ {\rm j} \cdot \delta ( f - f_{50} )-{\rm j} \cdot \delta ( f + f_{50} )\big] \hspace{0.05cm}.$$


(2)  The inverse Fourier transform of   $S(f)$  with  $ω_{30} = 2π · f_{30}$  and  $ω_{50} = 2πf_{50}$  leads to the following signal:

$$ s(t) = -2\,{\rm V} \cdot \sin(\omega_{\rm 30} t )-2\,{\rm V} \cdot \sin(\omega_{\rm 50} t )\hspace{0.05cm}.$$
  • This does not contain any component at the carrier frequency $f_{\rm T} = 40\text{ kHz}$,  so the  first statement  is true.


(3)  For DSB–AM without carrier,   $s(t)$  includes only the two frequencies $f_{\rm T} – f_{\rm N}$  and  $f_{\rm T} + f_{\rm N}$.

  • Hence,  with $f_{\rm T} = 40\text{ kHz}$  for the message frequency,  it follows that   $f_{\rm N} \hspace{0.05cm}\underline {= 10\ \rm kHz}.$


(4)  For DSB–AM without carrier,  it holds that:

$$s(t) = q(t) \cdot z(t) = A_{\rm N} \cdot \cos(\omega_{\rm N} t + \phi_{\rm N})\cdot \cos(\omega_{\rm T} t + \phi_{\rm T})$$
$$\Rightarrow \hspace{0.5cm} s(t) = \frac{A_{\rm N}}{2} \cdot \left[ \cos\left((\omega_{\rm T} +\omega_{\rm N})\cdot t + \phi_{\rm T}+ \phi_{\rm N}\right) + \cos\left((\omega_{\rm T} -\omega_{\rm N})\cdot t + \phi_{\rm T}- \phi_{\rm N}\right) \right] \hspace{0.05cm}.$$
  • A comparison with the result from subtask  (2)  shows that:
$$\cos(\omega_{\rm 30} \cdot t + \phi_{\rm T}- \phi_{\rm N}) = -\sin(\omega_{\rm 30} \cdot t )\hspace{0.05cm},$$
$$\cos(\omega_{\rm 50} \cdot t + \phi_{\rm T}+ \phi_{\rm N}) = -\sin(\omega_{\rm 50} \cdot t ) \hspace{0.05cm}.$$
  • Both equations can only be satisfied simultaneously with phase   $ϕ_{\rm N} \hspace{0.05cm}\underline {= 0}$ .
  • Additionally,  from the last given trigonometric relation it follows that  $ϕ_{\rm T} \hspace{0.05cm}\underline {= 90^\circ} = π/2$.


(5)  Comparing the results from subtasks  (2)  and  (4)  leads to  $A_{\rm N} \hspace{0.05cm}\underline {= 4 \ \rm V}$.  Thus,  the equations of the signals involved in the modulation are:

$$q(t ) = 4\,{\rm V} \cdot \cos (2 \pi \cdot 10\,{\rm kHz} \cdot t) \hspace{0.05cm},$$
$$z(t) = 1 \cdot \cos (2 \pi \cdot 40\,{\rm kHz} \cdot t + 90^{\circ}) = -\sin (2 \pi \cdot 40\,{\rm kHz} \cdot t )\hspace{0.05cm}.$$