Difference between revisions of "Aufgaben:Exercise 2.1: Rectification"

From LNTwww
 
(35 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Allgemeine Beschreibung
+
{{quiz-Header|Buchseite=Signal Representation/General Description
 
}}
 
}}
[[File:P_ID239__Sig_A_2_1.png|250px|right|Periodisches Dreiecksignal (Aufgabe A2.1)]]
+
[[File:P_ID239__Sig_A_2_1.png|250px|right|frame|Periodic triangular signal]]
Die Grafik zeigt das periodische Signal $x(t)$. Legt man $x(t)$ an den Eingang einer Nichtlinearität mit der Kennlinie
+
The graph shows the periodic signal  $x(t)$.  If  $x(t)$ is applied to the input of a non-linearity with the characteristic curve
  
$$y=g(x)=\left\{ {x \; \rm f\ddot{u}r\; \it x \geq \rm 0, \atop {\rm 0 \;\;\; \rm sonst,}}\right.$$
+
:$$y=g(x)=\left\{ {x \; \rm for\; \it x \geq \rm 0, \atop {\rm 0 \;\;\; \rm else,}}\right.$$
  
so erhält man am Ausgang das Signal $y(t)$. Eine zweite nichtlineare Kennlinie
+
the signal  $y(t)$ is obtained at the output.  A second non-linear characteristic
 
   
 
   
$$z=h(x)=|x|$$
+
:$$z=h(x)=|x|$$
  
liefert das Signal $z(t)$.
+
delivers the signal  $z(t)$.
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Note:''
 +
*This exercise belongs to the chapter  [[Signal_Representation/General_Description|General description of periodic signals]].
 +
 +
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der nachfolgenden Aussagen sind zutreffend?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
+$y = g(x)$ beschreibt einen Einweggleichrichter.
+
+$y = g(x)$&nbsp; describes a half-wave rectifier.
-$y = g(x)$ beschreibt einen Zweiweggleichrichter.
+
-$y = g(x)$&nbsp; describes a full-wave rectifier.
-$z = h(x)$ beschreibt einen Einweggleichrichter.
+
-$z = h(x)$&nbsp; describes a half-wave rectifier.
+$z = h(x)$ beschreibt einen Zweiweggleichrichter
+
+$z = h(x)$&nbsp; describes a full-wave rectifier.
  
  
{Wie groß ist die Grundfrequenz $f_0$ des Signals $x(t)$?
+
{What is the base frequency $f_0$&nbsp; of the signal&nbsp; $x(t)$?
 
|type="{}"}
 
|type="{}"}
$f_0$ = { 500 3% } Hz
+
$f_0 \ = \ $ { 500 3% } &nbsp; $\text{Hz}$
  
  
{Wie groß ist die Periodendauer des Signals $y(t)$?
+
{What is the period duration&nbsp; $T_0$&nbsp; of the signal&nbsp; $y(t)$?
 
|type="{}"}
 
|type="{}"}
$T_0$ = { 2 3% } ms
+
$T_0 \ = \ $ { 2 3% } &nbsp; $\text{ms}$
  
  
{Wie groß ist die Grundkreisfrequenz des Signals $z(t)$?
+
{What is the basic circular frequency&nbsp; $\omega_0$&nbsp; of the signal&nbsp; $z(t)$?
 
|type="{}"}
 
|type="{}"}
$\omega_0$ = { 6283 3% } 1/s
+
$\omega_0 \ = \ $ { 6283 3% } &nbsp; $\text{1/s}$
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''  Die nichtlineare Kennlinie $y = g(x)$ beschreibt einen Einweggleichrichter und $z = h(x) = |x|$ einen Zweiweggleichrichter ⇒  Richtig sind die Lösungsvorschläge 1 und 4.
+
'''(1)'''&nbsp;   Correct are the <u>solutions 1 and 4</u>:
 +
*The non-linear characteristic&nbsp; $y = g(x)$&nbsp; describes a half-wave rectifier.
 +
*$z = h(x) = |x|$&nbsp; describes a full-wave rectifier.
 +
 
 +
 
 +
'''(2)'''&nbsp;  The period duration&nbsp; $x(t)$&nbsp; is&nbsp; $T_0 = 2\,\text{ms}$. The inverse magnitudes to the base frequency&nbsp; $f_0 \hspace{0.1cm}\underline{ = 500\,\text{Hz}}$.
 +
 
  
'''2.'''  Die Periodendauer des gegebenen Signals $x(t)$ beträgt $T_0 = 2$ ms. Der Kehrwert hiervon ergibt die Grundfrequenz $f_0 = 500$ Hz.
+
'''(3)'''&nbsp;   The half-wave rectification does not change the duration of the period, see the left graph:&nbsp; $T_0 \hspace{0.1cm}\underline{= 2\,\text{ms}}$.
  
'''3.'''  Wie aus der folgenden linken Skizze hervorgeht, ändert sich durch die Einweggleichrichtung nichts an der Periodendauer. Das heißt: $T_0$ ist weiterhin 2 ms.
+
[[File:P_ID262__Sig_A_2_1_a.png|center|frame|Periodic triangular signals]]
[[File:P_ID320__Sig_Z_2_1_d_neu.png|250px|right|Differenzsignal (ML zu Aufgabe Z2.1)]]
 
  
'''4.'''  Das Signal z(t) nach der Doppelweggleichrichtung hat dagegen die doppelte Frequenz (siehe rechtes Bild). Es gelten dann folgende Werte: $T_0 = 1$ ms, $f_0 = 1$ kHz und $\omega_0 = 6283$ 1/s.
+
'''(4)'''&nbsp;   After full-wave rectification, the signal&nbsp; $z(t)$&nbsp; has double the frequency (see right graph). The following values apply here:
 +
:$$T_0 = 1\,\text{ms}, \hspace{0.5cm}  f_0 = 1\,\text{kHz}, \hspace{0.5cm}  \omega_0 \hspace{0.1cm}\underline{= 6283\,\text{1/s}}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^2. Periodische Signale^]]
+
[[Category:Signal Representation: Exercises|^2.1 Description of Periodic Signals^]]

Latest revision as of 05:08, 18 September 2022

Periodic triangular signal

The graph shows the periodic signal  $x(t)$.  If  $x(t)$ is applied to the input of a non-linearity with the characteristic curve

$$y=g(x)=\left\{ {x \; \rm for\; \it x \geq \rm 0, \atop {\rm 0 \;\;\; \rm else,}}\right.$$

the signal  $y(t)$ is obtained at the output.  A second non-linear characteristic

$$z=h(x)=|x|$$

delivers the signal  $z(t)$.




Note:



Questions

1

Which of the following statements are true?

$y = g(x)$  describes a half-wave rectifier.
$y = g(x)$  describes a full-wave rectifier.
$z = h(x)$  describes a half-wave rectifier.
$z = h(x)$  describes a full-wave rectifier.

2

What is the base frequency $f_0$  of the signal  $x(t)$?

$f_0 \ = \ $

  $\text{Hz}$

3

What is the period duration  $T_0$  of the signal  $y(t)$?

$T_0 \ = \ $

  $\text{ms}$

4

What is the basic circular frequency  $\omega_0$  of the signal  $z(t)$?

$\omega_0 \ = \ $

  $\text{1/s}$


Solution

(1)  Correct are the solutions 1 and 4:

  • The non-linear characteristic  $y = g(x)$  describes a half-wave rectifier.
  • $z = h(x) = |x|$  describes a full-wave rectifier.


(2)  The period duration  $x(t)$  is  $T_0 = 2\,\text{ms}$. The inverse magnitudes to the base frequency  $f_0 \hspace{0.1cm}\underline{ = 500\,\text{Hz}}$.


(3)  The half-wave rectification does not change the duration of the period, see the left graph:  $T_0 \hspace{0.1cm}\underline{= 2\,\text{ms}}$.

Periodic triangular signals

(4)  After full-wave rectification, the signal  $z(t)$  has double the frequency (see right graph). The following values apply here:

$$T_0 = 1\,\text{ms}, \hspace{0.5cm} f_0 = 1\,\text{kHz}, \hspace{0.5cm} \omega_0 \hspace{0.1cm}\underline{= 6283\,\text{1/s}}.$$