Difference between revisions of "Aufgaben:Exercise 2.1: Rectification"

From LNTwww
Line 40: Line 40:
  
  
{What is the period  $T_0$  of the signal  $y(t)$?
+
{What is the period duration  $T_0$  of the signal  $y(t)$?
 
|type="{}"}
 
|type="{}"}
 
$T_0 \ = \ $  { 2 3% }   $\text{ms}$
 
$T_0 \ = \ $  { 2 3% }   $\text{ms}$
Line 53: Line 53:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  Richtig sind die <u>Lösungsvorschläge 1 und 4</u>:
+
'''(1)'''&nbsp;  Correct are the <u>solutions 1 and 4</u>:
*Die nichtlineare Kennlinie&nbsp; $y = g(x)$&nbsp; beschreibt einen Einweggleichrichter.  
+
*The non-linear characteristic&nbsp; $y = g(x)$&nbsp; describes a half-wave rectifier.  
*$z = h(x) = |x|$&nbsp; beschreibt einen Zweiweggleichrichter.
+
*$z = h(x) = |x|$&nbsp; describes a full-wave rectifier.
 
    
 
    
  
'''(2)'''&nbsp;  Die Periodendauer des gegebenen Signals&nbsp; $x(t)$&nbsp; beträgt&nbsp; $T_0 = 2\,\text{ms}$. Der Kehrwert hiervon ergibt die Grundfrequenz&nbsp; $f_0  \hspace{0.1cm}\underline{ = 500\,\text{Hz}}$.
+
'''(2)'''&nbsp;  The period duration&nbsp; $x(t)$&nbsp; is&nbsp; $T_0 = 2\,\text{ms}$. The inverse amounts to the base frequency&nbsp; $f_0  \hspace{0.1cm}\underline{ = 500\,\text{Hz}}$.
  
  
'''(3)'''&nbsp;  Die Einweggleichrichtung ändert nichts an der Periodendauer, siehe  linke Skizze. Somit gilt weiterhin&nbsp; $T_0 \hspace{0.1cm}\underline{= 2\,\text{ms}}$.
+
'''(3)'''&nbsp;  The half-wave rectification does not change the duration of the period, see the left graph. Thus the following still applies&nbsp; $T_0 \hspace{0.1cm}\underline{= 2\,\text{ms}}$.
  
 
[[File:P_ID262__Sig_A_2_1_a.png|center|frame|Periodische Dreiecksignale]]
 
[[File:P_ID262__Sig_A_2_1_a.png|center|frame|Periodische Dreiecksignale]]
  
'''(4)'''&nbsp;  Das Signal&nbsp; $z(t)$&nbsp; nach der Doppelweggleichrichtung hat dagegen die doppelte Frequenz (siehe rechte Darstellung). Hier gelten folgende Werte:
+
'''(4)'''&nbsp;  After full-wave rectification, the signal&nbsp; $z(t)$&nbsp; has double the frequency (see right graph). The following values apply here:
 
:$$T_0 = 1\,\text{ms}, \hspace{0.5cm}  f_0 = 1\,\text{kHz}, \hspace{0.5cm}  \omega_0 \hspace{0.1cm}\underline{= 6283\,\text{1/s}}.$$
 
:$$T_0 = 1\,\text{ms}, \hspace{0.5cm}  f_0 = 1\,\text{kHz}, \hspace{0.5cm}  \omega_0 \hspace{0.1cm}\underline{= 6283\,\text{1/s}}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 01:31, 27 December 2020

Periodisches Dreiecksignal

The graph shows the periodic signal  $x(t)$. If  $x(t)$ is applied to the input of a non-linearity with the characteristic curve

$$y=g(x)=\left\{ {x \; \rm for\; \it x \geq \rm 0, \atop {\rm 0 \;\;\; \rm else,}}\right.$$

the signall  $y(t)$ is obtained at the output. A second non-linear characteristic

$$z=h(x)=|x|$$

delivers the signal  $z(t)$.




Hint:



Questions

1

Which of the following statements are true?

$y = g(x)$  describes a half-wave rectifier.
$y = g(x)$  describes a full-wave rectifier.
$z = h(x)$  describes a half-wave rectifier.
$z = h(x)$  describes a full-wave rectifier.

2

What is the base frequency $f_0$  of the signal  $x(t)$?

$f_0 \ = \ $

  $\text{Hz}$

3

What is the period duration  $T_0$  of the signal  $y(t)$?

$T_0 \ = \ $

  $\text{ms}$

4

What is the base angular frequency  $\omega_0$  of the signal  $z(t)$?

$\omega_0 \ = \ $

  $\text{1/s}$


Solution

(1)  Correct are the solutions 1 and 4:

  • The non-linear characteristic  $y = g(x)$  describes a half-wave rectifier.
  • $z = h(x) = |x|$  describes a full-wave rectifier.


(2)  The period duration  $x(t)$  is  $T_0 = 2\,\text{ms}$. The inverse amounts to the base frequency  $f_0 \hspace{0.1cm}\underline{ = 500\,\text{Hz}}$.


(3)  The half-wave rectification does not change the duration of the period, see the left graph. Thus the following still applies  $T_0 \hspace{0.1cm}\underline{= 2\,\text{ms}}$.

Periodische Dreiecksignale

(4)  After full-wave rectification, the signal  $z(t)$  has double the frequency (see right graph). The following values apply here:

$$T_0 = 1\,\text{ms}, \hspace{0.5cm} f_0 = 1\,\text{kHz}, \hspace{0.5cm} \omega_0 \hspace{0.1cm}\underline{= 6283\,\text{1/s}}.$$