Difference between revisions of "Aufgaben:Exercise 2.1Z: 2D-Frequency and 2D-Time Representations"

From LNTwww
Line 4: Line 4:
 
[[File:P_ID2145__Mob_z_2_1.png|right|frame|2D–Übertragungsfunktion, als Realteil und Imaginärteil]]
 
[[File:P_ID2145__Mob_z_2_1.png|right|frame|2D–Übertragungsfunktion, als Realteil und Imaginärteil]]
 
To describe a time-variant channel with several paths, the <i>two-dimensional impulse response</i> is used
 
To describe a time-variant channel with several paths, the <i>two-dimensional impulse response</i> is used
$$h(\dew,\hspace{0.05cm}t) = \sum_{m = 1}^{M} z_m(t) \cdot {\rm \delta} (\tau - \tau_m)\hspace{0.05cm}.$$
+
$$h(\tau,\hspace{0.05cm}t) = \sum_{m = 1}^{M} z_m(t) \cdot {\rm \delta} (\tau - \tau_m)\hspace{0.05cm}.$$
  
 
The first parameter&nbsp; $(\tau)$&nbsp; indicates the delay time, the second &nbsp;$(t)$&nbsp; makes statements about the time variance.  
 
The first parameter&nbsp; $(\tau)$&nbsp; indicates the delay time, the second &nbsp;$(t)$&nbsp; makes statements about the time variance.  
Line 10: Line 10:
 
The Fourier transformation of&nbsp; $h(\tau, t)$&nbsp; finally leads to the <i>time-variant transfer function</i>
 
The Fourier transformation of&nbsp; $h(\tau, t)$&nbsp; finally leads to the <i>time-variant transfer function</i>
 
:$$H(f,\hspace{0.05cm} t)
 
:$$H(f,\hspace{0.05cm} t)
  \hspace{0.2cm}  \stackrel {f,\hspace{0.05cm}{\a6}{\bullet}{\bullet\!-\!-\!-\!-\!-\!\circ} \hspace{0.2cm} h(\dew,\hspace{0.05cm}t)   
+
  \hspace{0.2cm}  \stackrel {f,\hspace{0.05cm}{\a6}{\bullet}{\bullet\!-\!-\!-\!-\!-\!\circ} \hspace{0.2cm} h(\tau,\hspace{0.05cm}t)   
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Line 53: Line 53:
 
|type="[]"}
 
|type="[]"}
 
- $h(\tau, t) = A \cdot \delta(\tau) + B \cdot \delta(\tau \, &ndash;5 \, \rm &micro; s)$.
 
- $h(\tau, t) = A \cdot \delta(\tau) + B \cdot \delta(\tau \, &ndash;5 \, \rm &micro; s)$.
- $h(\dew, t) = A \cdot \delta(\dew)$.
+
- $h(\tau, t) = A \cdot \delta(\tau)$.
+ $h(\dew, t) = z(t) \cdot \delta(\dew)$.
+
+ $h(\tau, t) = z(t) \cdot \delta(\tau)$.
  
 
{Estimate which channel the data was recorded for.
 
{Estimate which channel the data was recorded for.
Line 73: Line 73:
  
 
Thus the corresponding 2D&ndash;impulse response is
 
Thus the corresponding 2D&ndash;impulse response is
$$h(\dew,\hspace{0.05cm} t = 2\, {\rm ms}) = - {\rm j} \cdot 1.3 \cdot \delta (\dew) \hspace{0.05cm}  
+
$$h(\tau,\hspace{0.05cm} t = 2\, {\rm ms}) = - {\rm j} \cdot 1.3 \cdot \delta (\tau) \hspace{0.05cm}  
 
   \hspace{0.3cm}\Rightarrow \hspace{0.3cm} M = 1 \hspace{0.05cm}.$$
 
   \hspace{0.3cm}\Rightarrow \hspace{0.3cm} M = 1 \hspace{0.05cm}.$$
  

Revision as of 14:32, 15 April 2020

2D–Übertragungsfunktion, als Realteil und Imaginärteil

To describe a time-variant channel with several paths, the two-dimensional impulse response is used $$h(\tau,\hspace{0.05cm}t) = \sum_{m = 1}^{M} z_m(t) \cdot {\rm \delta} (\tau - \tau_m)\hspace{0.05cm}.$$

The first parameter  $(\tau)$  indicates the delay time, the second  $(t)$  makes statements about the time variance.

The Fourier transformation of  $h(\tau, t)$  finally leads to the time-variant transfer function

$$H(f,\hspace{0.05cm} t) \hspace{0.2cm} \stackrel {f,\hspace{0.05cm}{\a6}{\bullet}{\bullet\!-\!-\!-\!-\!-\!\circ} \hspace{0.2cm} h(\tau,\hspace{0.05cm}t) \hspace{0.05cm}.$$

In the graph,  $H(f, t)$  is displayed as a function of frequency, for different values of absolute time  $t$  in the range of $0 \ \text{...} \ 10 \ \rm ms$.

In general,  $H(f, t)$  is complex. The real part (top) and the imaginary part (bottom) are drawn separately.




Notes:

  • This task belongs to the topic of the chapter  Allgemeine Beschreibung zeitvarianter Systeme.
  • In the above equation, an echo-free channel is represented with the parameter  $M = 1$ .
  • Here are some numerical values of the specified time-variant transfer function:

$$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0\, {\rm ms}) \approx 0.3 - {\rm j} \cdot 0.4 \hspace{0.05cm},\hspace{0.2cm} H(f,\hspace{0.05cm} t = 2\, {\rm ms}) \approx 0.0 - {\rm j} \cdot 1.3 \hspace{0.05cm},$$ $$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 4\, {\rm ms}) \approx 0.1 - {\rm j} \cdot 1.5 \hspace{0.05cm},\hspace{0.2cm} H(f,\hspace{0.05cm} t = 6\, {\rm ms}) \approx 0.5 - {\rm j} \cdot 0.8 \hspace{0.05cm},$$ $$H(f,\hspace{0.05cm} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 8\, {\rm ms}) \approx 0.9 - {\rm j} \cdot 0.1 \hspace{0.05cm},\hspace{0.2cm} H(f,\hspace{0.05cm} t = 10\, {\rm ms}) \approx 1.4 \hspace{0.05cm}.$$

  • As can already be guessed from the above graphic, neither the real nor the imaginary part of the 2D–transfer function  $H(f, t)$  are free of mean values.


=Questionnaire

1

Is there a time variant channel here?

Yes.
No.

2

Are there echoes on this channel?

Yes.
No.

3

How can the 2D–impulse response be described here?

$h(\tau, t) = A \cdot \delta(\tau) + B \cdot \delta(\tau \, –5 \, \rm µ s)$.
$h(\tau, t) = A \cdot \delta(\tau)$.
$h(\tau, t) = z(t) \cdot \delta(\tau)$.

4

Estimate which channel the data was recorded for.

AWGN channel,
Two-way channel,
Rayleigh channel,
Rice channel.


Sample solution

{

(1)  As can be seen in the graph, the transfer function $H(f, t)$ is dependent on $t$. Thus $h(\tau, t)$ is also time-dependent. Correct is therefore YES.


(2)  If we look at a fixed point in time, for example $t = 2 \ \rm ms$, we obtain the following for the time-variant transfer function $$H(f,\hspace{0.05cm} t = 2\, {\rm ms}) = - {\rm j} \cdot 1.3 \hspace{0.05cm} = {\rm const.}$$

Thus the corresponding 2D–impulse response is $$h(\tau,\hspace{0.05cm} t = 2\, {\rm ms}) = - {\rm j} \cdot 1.3 \cdot \delta (\tau) \hspace{0.05cm} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} M = 1 \hspace{0.05cm}.$$

With a path, however, multipath propagation cannot occur. This means that the correct solution is no.


(3)  The correct solution is solution 3:

  • There is time variance but no frequency selectivity.
  • Proposals 1 and 2, on the other hand, describe time-invariant systems.


(4)  Correct is the solution 4:

  • For the AWGN–channel no transfer function can be specified.
  • For a two-way channel, $H(f, t)$ is at no time $t$ constant.
  • Since in the $H(f, t)$–graph in real– and imaginary part in each case an equal part not equal to zero can be recognized, the Rayleigh–channel can also be excluded.
  • The data for the present task comes from a Rice–Channel with the following parameters:
$$\sigma = {1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm} x_0 = {1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm}y_0 = -{1}/{\sqrt{2}} \hspace{0.05cm},\hspace{0.2cm} f_{\rm D,\hspace{0.05cm} max} = 100\,\,{\rm Hz}\hspace{0.05cm}.$