Difference between revisions of "Aufgaben:Exercise 2.1Z: Different Signal Courses"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID59__Sto_Z_2_1.png|right|frame|Discrete value or continuous value?]]
+
[[File:P_ID59__Sto_Z_2_1.png|right|frame|Discrete-value or continuous-value?]]
On the right are shown five signals.  The first three signals  $\rm (A)$,  $\rm (B)$  and  $\rm (C)$  are periodic and thus also deterministic, the two lower signals have stochastic character. The current value of these signals  $x(t)$  is taken as a random quantity in each case.
+
On the right are shown five signals.  The first three signals  $\rm (A)$,  $\rm (B)$  and  $\rm (C)$  are periodic and thus also deterministic,  the two lower signals have stochastic character.  The current value of these signals  $x(t)$  is taken as a random variable in each case.
  
 
Shown in detail are:
 
Shown in detail are:
  
$\rm (A)$:   a triangular-shaped periodic signal,
+
$\rm (A)$:   A triangular-shaped periodic signal,
  
 
$\rm (B)$:   the signal  $\rm (A)$  after one-way rectification,
 
$\rm (B)$:   the signal  $\rm (A)$  after one-way rectification,
Line 16: Line 16:
 
$\rm (D)$:   a rectangular random signal,
 
$\rm (D)$:   a rectangular random signal,
  
$\rm (E)$: &nbsp;&nbsp;the random signal&nbsp; $\rm (D)$&nbsp; according to &nbsp;AMI coding; &nbsp; <br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; here the "zero" is preserved, while each "one" is alternately encoded with "$+2\hspace{0.03cm}\rm V$" and "$-2\hspace{0.03cm} \rm V$".
+
$\rm (E)$: &nbsp;&nbsp;the random signal&nbsp; $\rm (D)$&nbsp; according to &nbsp;AMI coding; &nbsp; <br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; here the&nbsp; "zero"&nbsp; is preserved,&nbsp; while each&nbsp; "one" is&nbsp; alternately encoded with&nbsp; $+2\hspace{0.03cm}\rm V$&nbsp; and&nbsp; $-2\hspace{0.03cm} \rm V$.
  
  
Line 34: Line 34:
  
 
<quiz display=simple>
 
<quiz display=simple>
{For which signals does the current value describe a discrete random variable? <br>Consider also the respective number of steps&nbsp; $M$.
+
{For which signals does the current value describe a discrete random variable? <br>Consider also the respective number of steps &nbsp; &rArr; &nbsp; $M$.
 
|type="[]"}
 
|type="[]"}
 
- Signal $\rm (A)$,
 
- Signal $\rm (A)$,
Line 43: Line 43:
  
  
{For which signals is the current value (exclusively) a continuous random variable?  
+
{For which signals is the current value&nbsp; (exclusively)&nbsp; a continuous random variable?  
 
|type="[]"}
 
|type="[]"}
+ signal $\rm (A)$,
+
+ Signal $\rm (A)$,
 
- signal $\rm (B)$,
 
- signal $\rm (B)$,
 
- signal $\rm (C)$,
 
- signal $\rm (C)$,
Line 66: Line 66:
  
  
{How many symbols&nbsp; $(N_\min)$&nbsp; would you need to use for this investigation to ensure <br>that the probability for the event "The frequency so determined is between&nbsp; $0.499$&nbsp; and&nbsp; $0.501$" is greater than&nbsp; $99\%$&nbsp;?
+
{How many symbols&nbsp; $(N_\min)$&nbsp; would you need to use for this investigation to ensure <br>that the probability for the event&nbsp; "The frequency so determined is between&nbsp; $0.499$&nbsp; and&nbsp; $0.501$"&nbsp; is greater than&nbsp; $99\%$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$N_\min \ = \ $ { 2.5 3% } $\ \cdot 10^9$
 
$N_\min \ = \ $ { 2.5 3% } $\ \cdot 10^9$

Revision as of 14:52, 3 December 2021

Discrete-value or continuous-value?

On the right are shown five signals.  The first three signals  $\rm (A)$,  $\rm (B)$  and  $\rm (C)$  are periodic and thus also deterministic,  the two lower signals have stochastic character.  The current value of these signals  $x(t)$  is taken as a random variable in each case.

Shown in detail are:

$\rm (A)$:   A triangular-shaped periodic signal,

$\rm (B)$:   the signal  $\rm (A)$  after one-way rectification,

$\rm (C)$:   a rectangular periodic signal,

$\rm (D)$:   a rectangular random signal,

$\rm (E)$:   the random signal  $\rm (D)$  according to  AMI coding;  
          here the  "zero"  is preserved,  while each  "one" is  alternately encoded with  $+2\hspace{0.03cm}\rm V$  and  $-2\hspace{0.03cm} \rm V$.




Hints:



Questions

1

For which signals does the current value describe a discrete random variable?
Consider also the respective number of steps   ⇒   $M$.

Signal $\rm (A)$,
signal $\rm (B)$,
signal $\rm (C)$,
signal $\rm (D)$,
signal $\rm (E)$.

2

For which signals is the current value  (exclusively)  a continuous random variable?

Signal $\rm (A)$,
signal $\rm (B)$,
signal $\rm (C)$,
signal $\rm (D)$,
signal $\rm (E)$.

3

Which random variables have a discrete and a continuous part?

Signal $\rm (A)$,
signal $\rm (B)$,
signal $\rm (C)$,
signal $\rm (D)$,
signal $\rm (E)$.

4

For the signal  $\rm (D)$  the relative frequency  $h_0$  is determined empirically over $100\hspace{0.03cm}000$ binary symbols.
Name a lower bound for the probability that the determined value lies between  $0.49$  and  $0.51$ ?

${\rm Min\big[\ Pr(0.49}≤h_0≤0.51)\ \big] \ = \ $

5

How many symbols  $(N_\min)$  would you need to use for this investigation to ensure
that the probability for the event  "The frequency so determined is between  $0.499$  and  $0.501$"  is greater than  $99\%$ ?

$N_\min \ = \ $

$\ \cdot 10^9$


Solution

(1)  Correct are suggested solutions 3, 4, and 5:

  • The random variables  $\rm (C)$  and  $\rm (D)$  are binary  $(M= 2)$,
  • whilst the random variable  $\rm (E)$  is trivalent  $(M= 3)$.


(2)  The proposed solution 1 alone is correct:

  • The random variable  $\rm (A)$  is continuous in value and can take all values between  $\pm 2 \hspace{0.03cm} \rm V$  with equal probability.
  • All other random variables are discrete in value.


(3)  The proposed solution 2 alone is correct:

  • Only the random variable  $\rm (B)$  has a discrete part at  $0\hspace{0.03cm}\rm V$, and
  • also has a continuous component  (between  $0\hspace{0.03cm} \rm V$  and  $+2\hspace{0.03cm}\rm V)$.


(4)  According to Bernoulli's law of large numbers:

$$\rm Pr\left(|\it h_{\rm 0} - \it p_{\rm 0}|\ge\it\varepsilon\right)\le\frac{\rm 1}{\rm 4\cdot \it N\cdot\it\varepsilon^{\rm 2}} = {\it p}_{\rm \hspace{0.01cm}Bernouilli}.$$
  • Thus, the probability that the relative frequency $h_0$ deviates from the probability $p_0 = 0.5$ by more than $0.01$ can be calculated as $\varepsilon = 0.01$:
$${\it p}_{\rm \hspace{0.01cm}Bernoulli} = \rm\frac{1}{4\cdot 100000\cdot 0.01^2}=\rm 2.5\% \hspace{0.5cm}\Rightarrow \hspace{0.5cm} {\rm Min}\big[({\rm Pr}(0.49 \le h_0 \le 0.51)\big] \hspace{0.15cm}\underline{= 0.975}.$$


(5)  With  $p_{\rm Bernoulli} = 1 - 0.99 = 0.01$  and  $\varepsilon = 0.001$  holds again by the law of large numbers:

$${\it p}_{\rm \hspace{0.01cm}Bernoulli}\le\frac{\rm 1}{\rm 4\cdot \it N\cdot\it \varepsilon^{\rm 2}}.$$
  • Solved for  $N$ , one gets:
$$N\ge\frac{\rm 1}{\rm 4\cdot\it p_{\rm \hspace{0.01cm}Bernoulli}\cdot\varepsilon^{\rm 2}}=\rm \frac{1}{4\cdot 0.01\cdot 0.001^{2}}=\rm 0.25\cdot 10^8 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} {\it N}_{\rm min} \hspace{0.15cm}\underline{= 2.5\cdot 10^9}.$$