Difference between revisions of "Aufgaben:Exercise 2.2: Modulation Depth"

From LNTwww
m
m
Line 4: Line 4:
  
 
[[File:P_ID989__Mod_A_2_2.png|right|frame|Modulationsgrad-Definition bei ZSB–AM]]
 
[[File:P_ID989__Mod_A_2_2.png|right|frame|Modulationsgrad-Definition bei ZSB–AM]]
The graph shows DSB-amplitude modulated signals  $s_1(t)$  to  $s_4(t)$  with differing modulation depth  $m$. Let message signal  $q(t)$  and carrier signal  $z(t)$  each be cosine:
+
The graph shows DSB amplitude-modulated signals  $s_1(t)$  to  $s_4(t)$  with differing modulation depth  $m$. Let message signal  $q(t)$  and carrier signal  $z(t)$  each be cosine:
 
:$$q(t) = A_{\rm N} \cdot \cos (2 \pi f_{\rm N} t),\hspace{0.2cm} f_{\rm N} = 4\,{\rm kHz}\hspace{0.05cm},$$
 
:$$q(t) = A_{\rm N} \cdot \cos (2 \pi f_{\rm N} t),\hspace{0.2cm} f_{\rm N} = 4\,{\rm kHz}\hspace{0.05cm},$$
 
:$$ z(t) = \hspace{0.2cm}1 \hspace{0.15cm} \cdot \cos (2 \pi f_{\rm T} t),\hspace{0.2cm} f_{\rm T} = 50\,{\rm kHz}\hspace{0.05cm}.$$
 
:$$ z(t) = \hspace{0.2cm}1 \hspace{0.15cm} \cdot \cos (2 \pi f_{\rm T} t),\hspace{0.2cm} f_{\rm T} = 50\,{\rm kHz}\hspace{0.05cm}.$$
Line 11: Line 11:
 
In the graphs, the chosen normalization was:
 
In the graphs, the chosen normalization was:
 
:$$A_{\rm T}+ A_{\rm N} = 2\,{\rm V}\hspace{0.05cm}.$$
 
:$$A_{\rm T}+ A_{\rm N} = 2\,{\rm V}\hspace{0.05cm}.$$
*IIf the modulation depth is  $m ≤ 1$, then  $A(t)= q(t) + A_{\rm T}$   is equal to the envelope  $a(t)$.  
+
*If the modulation depth is  $m ≤ 1$, then  $A(t)= q(t) + A_{\rm T}$   is equal to the envelope  $a(t)$.  
 
*In contrast, for a modulation depth  $m > 1$:
 
*In contrast, for a modulation depth  $m > 1$:
 
:$$a(t ) = |A(t)|\hspace{0.05cm}.$$
 
:$$a(t ) = |A(t)|\hspace{0.05cm}.$$
Line 47: Line 47:
 
{Which statements are true for the signal  $s_4(t)$ ?
 
{Which statements are true for the signal  $s_4(t)$ ?
 
|type="[]"}
 
|type="[]"}
+ Es handelt sich um  „ZSB–AM ohne Träger”.
+
+ This is a case of "DSB–AM without a carrier".
- Der Modulationsgrad ist  $m = 0$.
+
- The modulation depth is  $m = 0$.
+ Der Modulationsgrad  $m$  ist unendlich groß.
+
+ The modulation depth  $m$  is infinite.
  
 
 
{Es gelte nun &nbsp;$A_{\rm T} = A_{\rm N} = 1\ \rm V$, also &nbsp;$m = 1$.&nbsp; Wie lautet das Spektrum &nbsp;$S_+(f)$&nbsp; des analytischen Signals? <br>Welche Diracgewichte treten bei &nbsp;$f_{\rm T}$&nbsp; sowie bei &nbsp;$f_{\rm T}± f_{\rm N}$&nbsp; auf?
+
{Let &nbsp;$A_{\rm T} = A_{\rm N} = 1\ \rm V$, so &nbsp;$m = 1$.&nbsp; What is the spectrum &nbsp;$S_+(f)$&nbsp; of the analytical signal? <br>Which Dirac weights occur at &nbsp;$f_{\rm T}$&nbsp; as well as at &nbsp;$f_{\rm T}± f_{\rm N}$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$S_+(f_{\rm T})  \ = \ $ { 1 3% } $\ \text{V}$  
 
$S_+(f_{\rm T})  \ = \ $ { 1 3% } $\ \text{V}$  
 
$S_+(f_{\rm T} ± f_{\rm N})  \ = \ $ { 0.5 3% }  $\ \text{V}$  
 
$S_+(f_{\rm T} ± f_{\rm N})  \ = \ $ { 0.5 3% }  $\ \text{V}$  
  
{Es gelte weiter &nbsp;$m = 1$.&nbsp; Welcher Anteil &nbsp;$P_{\rm T}/P_{\rm S}$&nbsp; der gesamten Sendeleistung &nbsp;$P_{\rm S}$&nbsp; geht allein auf den Träger zurück, der nicht zur Demodulation genutzt werden kann?
+
{Now let &nbsp;$m = 1$.&nbsp; Which fraction &nbsp;$P_{\rm T}/P_{\rm S}$&nbsp; of the total transmission power &nbsp;$P_{\rm S}$&nbsp; is due to the carrier alone, and thus cannot be used for demodulation??
 
|type="{}"}
 
|type="{}"}
 
$P_{\rm T}/P_{\rm S}  \ = \ $ { 0.667 3% }  
 
$P_{\rm T}/P_{\rm S}  \ = \ $ { 0.667 3% }  
  
{Verallgemeinern Sie das Ergebnis aus&nbsp; '''(4)'''&nbsp; für einen beliebigen Modulationsgrad &nbsp;$m$. <br>Welche Leistungsverhältnisse ergeben sich für &nbsp;$m = 0.5$, &nbsp;$m = 3$&nbsp; und &nbsp;$m → ∞$ ?
+
{Generalize the result from &nbsp; '''(4)'''&nbsp; for an arbitrary modulation depth&nbsp;$m$. <br>What are the power ratios for  &nbsp;$m = 0.5$, &nbsp;$m = 3$&nbsp; and &nbsp;$m → ∞$ ?
 
|type="{}"}
 
|type="{}"}
 
$m = 0.5\text{:}\hspace{0.3cm} P_{\rm T}/P_{\rm S}  \ = \ $ { 0.889 3% }  
 
$m = 0.5\text{:}\hspace{0.3cm} P_{\rm T}/P_{\rm S}  \ = \ $ { 0.889 3% }  
Line 67: Line 67:
 
$m → ∞ \text{:}\hspace{0.3cm} P_{\rm T}/P_{\rm S}  \ = \  $ { 0. }  
 
$m → ∞ \text{:}\hspace{0.3cm} P_{\rm T}/P_{\rm S}  \ = \  $ { 0. }  
  
{Welche der nachfolgenden Bewertungen erscheinen Ihnen nach den bisherigen Berechnungen als sinnvoll?
+
{Based on the calculations so far, which of the following assessments seem reasonable to you?
 
|type="[]"}
 
|type="[]"}
+ $m ≈ 1$&nbsp; ist aus energetischen Gründen günstiger als ein kleines&nbsp; $m$.
+
+ $m ≈ 1$&nbsp; s more favorable than a small&nbsp; $m$ for energy reasons.
+ Nur bei Hüllkurvendemodulation ist der Träger sinnvoll.
+
+ The carrier is only useful for envelope demodulation.
 
</quiz>
 
</quiz>
  
Line 88: Line 88:
  
  
'''(2)'''&nbsp; Richtig sind die <u>Aussagen 1 und 3</u>:
+
'''(2)'''&nbsp; <u>Answers 1 and 3</u> are correct:
 
*In diesem Fall ist&nbsp; $A_{\rm T} = 0$, das heißt, es liegt tatsächlich eine&nbsp; „ZSB–AM ohne Träger”&nbsp; vor.
 
*In diesem Fall ist&nbsp; $A_{\rm T} = 0$, das heißt, es liegt tatsächlich eine&nbsp; „ZSB–AM ohne Träger”&nbsp; vor.
 
*Der Modulationsgrad&nbsp; $m = A_{\rm N}/A_{\rm T}$&nbsp; ist unendlich groß.  
 
*Der Modulationsgrad&nbsp; $m = A_{\rm N}/A_{\rm T}$&nbsp; ist unendlich groß.  

Revision as of 13:48, 24 November 2021

Modulationsgrad-Definition bei ZSB–AM

The graph shows DSB amplitude-modulated signals  $s_1(t)$  to  $s_4(t)$  with differing modulation depth  $m$. Let message signal  $q(t)$  and carrier signal  $z(t)$  each be cosine:

$$q(t) = A_{\rm N} \cdot \cos (2 \pi f_{\rm N} t),\hspace{0.2cm} f_{\rm N} = 4\,{\rm kHz}\hspace{0.05cm},$$
$$ z(t) = \hspace{0.2cm}1 \hspace{0.15cm} \cdot \cos (2 \pi f_{\rm T} t),\hspace{0.2cm} f_{\rm T} = 50\,{\rm kHz}\hspace{0.05cm}.$$

The modulated signal (transmitted signal) with the DC component added in the modulator is  $A_{\rm T}$:

$$s(t ) = A(t) \cdot z(t), \hspace{0.2cm} A(t) = q(t) + A_{\rm T}\hspace{0.05cm}.$$

In the graphs, the chosen normalization was:

$$A_{\rm T}+ A_{\rm N} = 2\,{\rm V}\hspace{0.05cm}.$$
  • If the modulation depth is  $m ≤ 1$, then  $A(t)= q(t) + A_{\rm T}$  is equal to the envelope  $a(t)$.
  • In contrast, for a modulation depth  $m > 1$:
$$a(t ) = |A(t)|\hspace{0.05cm}.$$
  • The cosine curve  $A(t)$  varies between  $A_{\rm max}$  and  $A_{\rm min}$; because of normalization,  $A_{\rm max} = 2 \ \rm V$ is always the case.
  • The minimum values of  $A(t)$  occur at half the period of the source signal $($i.e., for  $t = 125 \ \rm µ s)$ :
$$A_{\rm min} = q(T_0/2)+ A_{\rm T} = A_{\rm T}-A_{\rm N}.$$
  • The numerical values are given in the graph.






Hints:


Questions

1

Determine the modulation depth for each of the signals  $s_1(t)$,  $s_2(t)$,  $s_3(t)$ .

$m_1 \ = \ $

$m_2 \ = \ $

$m_3 \ = \ $

2

Which statements are true for the signal  $s_4(t)$ ?

This is a case of "DSB–AM without a carrier".
The modulation depth is  $m = 0$.
The modulation depth  $m$  is infinite.

3

Let  $A_{\rm T} = A_{\rm N} = 1\ \rm V$, so  $m = 1$.  What is the spectrum  $S_+(f)$  of the analytical signal?
Which Dirac weights occur at  $f_{\rm T}$  as well as at  $f_{\rm T}± f_{\rm N}$ ?

$S_+(f_{\rm T}) \ = \ $

$\ \text{V}$
$S_+(f_{\rm T} ± f_{\rm N}) \ = \ $

$\ \text{V}$

4

Now let  $m = 1$.  Which fraction  $P_{\rm T}/P_{\rm S}$  of the total transmission power  $P_{\rm S}$  is due to the carrier alone, and thus cannot be used for demodulation??

$P_{\rm T}/P_{\rm S} \ = \ $

5

Generalize the result from   (4)  for an arbitrary modulation depth $m$.
What are the power ratios for  $m = 0.5$,  $m = 3$  and  $m → ∞$ ?

$m = 0.5\text{:}\hspace{0.3cm} P_{\rm T}/P_{\rm S} \ = \ $

$m = 3.0\text{:}\hspace{0.3cm} P_{\rm T}/P_{\rm S} \ = \ $

$m → ∞ \text{:}\hspace{0.3cm} P_{\rm T}/P_{\rm S} \ = \ $

6

Based on the calculations so far, which of the following assessments seem reasonable to you?

$m ≈ 1$  s more favorable than a small  $m$ for energy reasons.
The carrier is only useful for envelope demodulation.


Solution

(1)  From the two equations

$$ A_{\rm max} = A_{\rm T}+A_{\rm N}=2\,\,{\rm V},\hspace{0.3cm} A_{\rm min} = A_{\rm T}-A_{\rm N}\hspace{0.05cm}$$

directly follows:

$$A_{\rm N} = (A_{\rm max} - A_{\rm min})/2,\hspace{0.3cm} A_{\rm T} = (A_{\rm max} + A_{\rm min})/2\hspace{0.05cm}.$$
  • Thus, the modulation depth is
$$m = \frac{A_{\rm max} - A_{\rm min}}{A_{\rm max} + A_{\rm min}}\hspace{0.05cm}.$$
  • With the given numerical values, one obtains:

$$ m_1 = \frac{2\,{\rm V} - 0.667\,{\rm V}}{2\,{\rm V} + 0.667\,{\rm V}} \hspace{0.15cm}\underline {= 0.5}\hspace{0.05cm}, \hspace{0.5cm} m_2 = \frac{2\,{\rm V} - 0\,{\rm V}}{2\,{\rm V} + 0\,{\rm V}} \hspace{0.15cm}\underline {= 1.0}\hspace{0.05cm}, \hspace{0.5cm} m_3 = \frac{2\,{\rm V} -(-1\,{\rm V})}{2\,{\rm V} + (-1\,{\rm V})} \hspace{0.15cm}\underline{=3.0}\hspace{0.05cm}.$$


(2)  Answers 1 and 3 are correct:

  • In diesem Fall ist  $A_{\rm T} = 0$, das heißt, es liegt tatsächlich eine  „ZSB–AM ohne Träger”  vor.
  • Der Modulationsgrad  $m = A_{\rm N}/A_{\rm T}$  ist unendlich groß.



Spektrum: Analytisches Signal

(3)  Das Spektrum  $S_+(f)$  setzt sich für jeden Modulationsgrad  $m$  aus drei Diraclinien zusammen mit folgenden Gewichten:

  • $A_{\rm T}$  $($bei  $f = f_{\rm T})$,
  • $m/2 · A_{\rm T}$  $($bei  $f = f_{\rm T} ± f_{\rm N})$.


Für $m = 1$ ergeben sich die Gewichte entsprechend der Skizze:

  • $S_+(f_{\rm T}) = 1\ \rm V$,
  • $S_+(f_{\rm T} ± f_{\rm T}) = 0.5\ \rm V$.



(4)  Die auf den Widerstand  $1 \ Ω$  bezogene Leistung  (Quadrat des Effektivwertes)  einer harmonischen Schwingung mit der Amplitude  $A_{\rm T} = 1 \ \rm V$  beträgt:

$$P_{\rm T} ={A_{\rm T}^2}/{2} = 0.5\,{\rm V}^2 \hspace{0.05cm}.$$
  • In gleicher Weise erhält man für die Leistungen des unteren und des oberen Seitenbandes:
$$P_{\rm USB} = P_{\rm OSB} =({A_{\rm N}}/{2})^2/2 = 0.125\,{\rm V}^2 \hspace{0.05cm}.$$
  • Das gesuchte Verhältnis ist somit für  $m=1$:
$${P_{\rm T}}/{P_{\rm S}}= \frac{P_{\rm T}}{P_{\rm USB} + P_{\rm T}+ P_{\rm OSB}}= \frac{0.5\,{\rm V}^2}{0.125\,{\rm V}^2 + 0.5\,{\rm V}^2+ 0.125\,{\rm V}^2}= 2/3\hspace{0.15cm}\underline { = 0.667}\hspace{0.05cm}.$$


(5)  Mit den Diracgewichten  $m/2 · A_{\rm T}$  der beiden Seitenbänder entsprechend der Teilaufgabe  (3)  erhält man:

$${P_{\rm T}}/{P_{\rm S}}= \frac{A_{\rm T}^2/2}{A_{\rm T}^2/2 + 2 \cdot (m/2)^2 \cdot A_{\rm T}^2/2}= \frac{2}{2 + m^2}\hspace{0.05cm}.$$
  • Dies führt zu den Zahlenwerten  $8/9 = 0.889$  $($für  $m = 0.5)$,     $2/11 = 0.182$  $($für  $m = 3)$  und     $0$  $($für  $m \to ∞$).


(6)  Beide Aussagen treffen zu:

  • Die Zusetzung des Trägers macht nur Sinn, um den einfacheren Hüllkurvendemodulator verwenden zu können.  Dies geht nur für  $m \le 1$.
  • Ist dagegen der Modulationsgrad  $m > 1$  und somit der Einsatz eines Synchrondemodulators erforderlich, sollte man aus energetischen Gründen auf den Träger (fast) ganz verzichten.
  • Ebenso ist bei Anwendung eines Hüllkurvendemodulators aus energetischen Gründen ein möglichst großer Modulationsgrad  $m < 1$    ⇒   $m \to 1$  anzustreben.
  • Allerdings kann durch einen kleinen Restträger die Trägerrückgewinnung erleichtert werden, die beim Synchrondemodulator zur Frequenz– und Phasensynchronisation benötigt wird.  Die zweite Aussage ist somit nur bedingt als richtig zu bewerten.