Difference between revisions of "Aufgaben:Exercise 2.2: Properties of Galois Fields"

From LNTwww
(Die Seite wurde neu angelegt: „{{quiz-Header|Buchseite=Kanalcodierung/Einige Grundlagen der Algebra }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice Frage…“)
 
 
(39 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Einige Grundlagen der Algebra
+
{{quiz-Header|Buchseite=Channel_Coding/Some_Basics_of_Algebra}}
  
 +
[[File:EN_KC_A_2_2.png|right|frame|Addition / multiplication for&nbsp; $q = 5$&nbsp; and&nbsp; $q = 6$]]
 +
Here we consider the sets of numbers
 +
* $Z_5 = \{0, \, 1, \, 2, \, 3, \, 4\} \ \Rightarrow \ q = 5$,
  
 +
* $Z_6 = \{0, \, 1, \, 2, \, 3, \, 4,\, 5\} \ \Rightarrow \ q = 6$.
  
}}
 
  
[[File:|right|]]
+
In the adjacent graph,&nbsp;  the (partially incomplete)&nbsp; addition and multiplication tables for&nbsp; $q = 5$&nbsp; and&nbsp; $q = 6$&nbsp; are given,&nbsp; where both addition&nbsp; ("$+$")&nbsp; and multiplication&nbsp; ("$\hspace{0.05cm}\cdot\hspace{0.05cm}$")&nbsp; modulo&nbsp; $q$&nbsp; are to be understood.
  
 +
To be checked is whether the number sets&nbsp; $Z_5$&nbsp; and&nbsp; $Z_6$&nbsp; satisfy all the conditions of a Galois field&nbsp; $\rm GF(5)$&nbsp; and&nbsp; $\rm GF(6)$,&nbsp; respectively.
 +
 +
In the&nbsp; [[Channel_Coding/Some_Basics_of_Algebra#Definition_of_a_Galois_field|"theory section"]]&nbsp; a total of eight conditions are mentioned,&nbsp; all of which must be met.&nbsp; You are to check only two of these conditions:
 +
 +
$\rm(D)$&nbsp;  For all elements there is an&nbsp; <b>additive inverse</b>&nbsp; (Inverse&nbsp; for&nbsp; "$+$"):
 +
:$$\forall \hspace{0.15cm}  z_i \in {\rm GF}(q),\hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_A}(z_i) \in {\rm GF}(q)\text{:}\hspace{0.5cm}z_i + {\rm Inv_A}(z_i) = 0  \hspace{0.25cm} \Rightarrow \hspace{0.25cm}
 +
{\rm Inv_A}(z_i) = -z_i \hspace{0.05cm}.$$
 +
 +
$\rm(E)$&nbsp;  All elements have a&nbsp; <b>multiplicative inverse</b>&nbsp; (Inverse&nbsp; for&nbsp; "$\hspace{0.05cm}\cdot\hspace{0.05cm}$"):
 +
:$$\forall \hspace{0.15cm}  z_i \in {\rm GF}(q),\hspace{0.15cm} z_i \ne 0, \hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_M}(z_i) \in {\rm GF}(q)\text{:}\hspace{0.5cm}z_i \cdot {\rm Inv_M}(z_i) = 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm}
 +
{\rm Inv_M}(z_i) = z_i^{-1}\hspace{0.05cm}.$$
 +
 +
The other conditions for a Galois field, viz.
 +
* Closure,
 +
* Existence of zero&ndash; and identity element,
 +
* validity of commutative law, associative law and distributive law
 +
 +
 +
are satisfied by both,&nbsp; $Z_5$&nbsp; and&nbsp; $Z_6$.
 +
 +
 +
 +
 +
 +
Hints:&nbsp; The exercise refers to the chapter&nbsp; [[Channel_Coding/Some_Basics_of_Algebra| "Some Basics of Algebra"]].
  
===Fragebogen===
 
  
<quiz display=simple>
 
{Multiple-Choice Frage
 
|type="[]"}
 
- Falsch
 
+ Richtig
 
  
  
{Input-Box Frage
+
===Questions===
 +
<quiz display=simple>
 +
{Complete the addition table for&nbsp; $q = 5$.&nbsp; Enter the following values:
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$A_{04} \ = \ ${ 4 }
 +
$A_{14} \ = \ ${ 0. }
 +
$A_{44} \ = \ ${ 3 }
  
 +
{Complete the multiplication table for&nbsp; $q = 5$.&nbsp; Enter the following values:
 +
|type="{}"}
 +
$M_{04} \ = \ ${ 0. }
 +
$M_{14} \ = \ ${ 4. }
 +
$M_{44} \ = \ ${ 1. }
  
 +
{Does the&nbsp; $Z_5$&nbsp; set satisfy the conditions of a Galois field?
 +
|type="[]"}
 +
+ Yes.
 +
- No,&nbsp; there is not an additive inverse for all elements&nbsp; $(0, \hspace{0.05cm}\text{...} \hspace{0.1cm}, 4)$&nbsp;.
 +
- No,&nbsp; the elements&nbsp; $1, \hspace{0.05cm}\text{...} \hspace{0.1cm}, 4$&nbsp; do not all have a multiplicative inverse.
  
 +
{Does the&nbsp; $Z_6$&nbsp; set satisfy the conditions of a Galois field?
 +
|type="[]"}
 +
- Yes.
 +
- No,&nbsp; there is not an additive inverse for all elements&nbsp; $(0, \hspace{0.05cm}\text{...} \hspace{0.1cm}, 5)$&nbsp;.
 +
+ No,&nbsp; the elements&nbsp; $1, \hspace{0.05cm}\text{...} \hspace{0.1cm}, 5$&nbsp; do not all have a multiplicative inverse.
 +
 +
{The number sets&nbsp; $Z_2, \ Z_3, \ Z_5$&nbsp; and $Z_7$&nbsp; yield a Galois field,&nbsp; but the sets&nbsp; $Z_4, \ Z_6, \ Z_8, \ Z_9$&nbsp; do not.&nbsp; What do you conclude from this?
 +
|type="[]"}
 +
- $Z_{10} = \{0, \, 1, \, 2, \, 3, \, 4, \, 5, \, 6, \, 7, \, 8, \, 9\}$ is a Galois field?
 +
+ $Z_{11} = \{0, \, 1, \, 2, \, 3, \, 4, \,5, \, 6, \, 7, \, 8, \, 9, \, 10\}$ is a Galois field?
 +
- $Z_{12} = \{0, \, 1, \, 2, \, 3, \, 4, \, 5, \, 6, \, 7, \, 8, \, 9, \, 10, \, 11\}$ is a Galois field?
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp;  In general,&nbsp; for&nbsp; $0 &#8804; \mu &#8804; 4 \text{:} \hspace{0.2cm} A_{\mu 4} = (\mu + 4) \, {\rm mod} \, 5$.&nbsp; It follows:
'''2.'''
+
:$$A_{04} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (0+4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 4}\hspace{0.05cm},\hspace{0.2cm}A_{14}=(1+4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 0}\hspace{0.05cm},\hspace{0.2cm}A_{24}=(2+4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.05cm},$$
'''3.'''
+
:$$A_{34} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (3+4)\hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5= 2\hspace{0.05cm},\hspace{0.2cm}A_{44}=(4+4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$
'''4.'''
+
 
'''5.'''
+
Due to the commutative law of addition,
'''6.'''
+
:$$z_i + z_j = z_j + z_i \hspace{0.5cm} {\rm for  \hspace{0.2cm}all\hspace{0.2cm} } z_i, z_j \in Z_5\hspace{0.05cm},$$
'''7.'''
+
 
{{ML-Fuß}}
+
the last column of the addition table is of course identical to the last row of the same table.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; Now $M_{\mu 4} = (\mu \cdot 4) \, {\rm mod} \, 5$&nbsp; and we obtain:
 +
:$$M_{04} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (0\cdot4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 0}\hspace{0.05cm},\hspace{0.2cm}M_{14}=(1\cdot4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 4}\hspace{0.05cm},\hspace{0.2cm}M_{24}=(2\cdot4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 3\hspace{0.05cm},$$
 +
:$$M_{34} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (3\cdot4)\hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 2\hspace{0.05cm},\hspace{0.2cm}M_{44}=(4\cdot 4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 1}\hspace{0.05cm}.$$
 +
 
 +
Since multiplication is also commutative,&nbsp; the last column in the multiplication table again matches the last row.
 +
 
 +
 
 +
 
 +
[[File:P_ID2493__KC_A_2_2c.png|right|frame|Addition/multiplication tables for&nbsp; $q = 5$]]
 +
 
 +
'''(3)'''&nbsp; The graph shows the full addition and multiplication tables for&nbsp; $q = 5$.&nbsp; You can see:
 +
* In the addition table there is exactly one zero in each row&nbsp; (and also in each column).&nbsp;
 +
 
 +
*So for every&nbsp; $z_i &#8712; Z_5$&nbsp; there is an&nbsp; ${\rm Inv}_{\rm A} (z_i)$&nbsp; that satisfies the condition&nbsp; $[z_i + {\rm Inv}_{\rm A}(z_i)] \, {\rm mod} \, 5 = 0$:
 +
:$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Inv_A}(z_i) = 0  \hspace{0.05cm},$$
 +
:$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Inv_A}(z_i) = (-1) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 4 \hspace{0.05cm},$$
 +
:$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Inv_A}(z_i) = (-2) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 3 \hspace{0.05cm},$$ 
 +
:$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 3\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Inv_A}(z_i) = (-3) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 2 \hspace{0.05cm},$$
 +
:$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 4\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Inv_A}(z_i) = (-4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1 \hspace{0.05cm}.$$
 +
 
 +
* In the multiplication table we leave the zero element&nbsp; (first row and first column)&nbsp; out of consideration.  
 +
 
 +
*In all other rows and columns of the lower table there is indeed exactly one each.&nbsp;
 +
 
 +
*From the condition $[z_i \cdot {\rm Inv}_{\rm M}(z_i)] \, {\rm mod} \, 5 = 1$&nbsp; one obtains:
 +
:$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1  \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm}  z_i \cdot {\rm Inv_M}(z_i) =  1\hspace{0.05cm},$$
 +
:$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2  \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 3 \hspace{0.25cm} \Rightarrow \hspace{0.25cm}  z_i \cdot {\rm Inv_M}(z_i) =  6 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1 \hspace{0.05cm},$$
 +
:$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 3  \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 2 \hspace{0.25cm} \Rightarrow \hspace{0.25cm}  z_i \cdot {\rm Inv_M}(z_i) =  6 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1 \hspace{0.05cm},$$
 +
:$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 4  \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 4 \hspace{0.25cm} \Rightarrow \hspace{0.25cm}  z_i \cdot {\rm Inv_M}(z_i) =  16 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1 \hspace{0.05cm}.$$
 +
 
 +
*Since both the required additive and multiplicative inverses exist &nbsp; &rArr; &nbsp; $Z_5$ describes a Galois field $\rm GF(5)$ &nbsp;
 +
 
 +
*Correct is the <u>proposed solution 1</u>.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; From the blue addition table on the statement page,&nbsp; we see that all numbers&nbsp; $(0, \, 1, \, 2, \, 3, \, 4, \, 5)$&nbsp; of the set $Z_6$&nbsp; have an additive inverse
 +
 
 +
&nbsp; &#8658; &nbsp; in each row&nbsp; (and column)&nbsp; there is exactly one zero.
 +
 
 +
*On the other hand,&nbsp; a multiplicative inverse&nbsp; ${\rm Inv}_{\rm M}(z_i)$&nbsp; exists only for&nbsp; $z_i = 1$&nbsp; and&nbsp; $z_i = 5$,&nbsp; viz.  
 +
:$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1  \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm}  z_i \cdot {\rm Inv_M}(z_i) =  1\hspace{0.05cm},$$
 +
:$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 5  \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 5 \hspace{0.25cm} \Rightarrow \hspace{0.25cm}  z_i \cdot {\rm Inv_M}(z_i) =  25 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 6 = 1 \hspace{0.05cm}.$$
 +
 
 +
*For&nbsp; $z_i = 2, \ z_i = 3$ and $z_i = 4$,&nbsp; we find no element&nbsp; $z_j$,&nbsp; so that&nbsp; $(z_i \cdot z_j) \, {\rm mod} \, 6 = 1$.
 +
 
 +
*Correct is the <u>proposed solution 3</u> &nbsp; &rArr; &nbsp; the blue tables for&nbsp; $q = 6$&nbsp; do not yield a Galois field&nbsp; $\rm GF(6)$.
  
  
  
[[Category:Aufgaben zu Kanalcodierung|^2.1 Einige Grundlagen der Algebra
+
'''(5)'''&nbsp; Correct is the&nbsp; <u>proposed solution 2</u>:
 +
*A finite number set&nbsp; $Z_q = \{0, \, 1, \hspace{0.05cm} \text{...} \hspace{0.1cm} , \, q-1\}$&nbsp; of natural numbers leads to a Galois field only if&nbsp; $q$&nbsp; is a prime number.
 +
   
 +
*Of the number sets mentioned above,&nbsp; this is true only for&nbsp; $Z_{11}$.
 +
{{ML-Fuß}}
  
  
^]]
+
[[Category:Channel Coding: Exercises|^2.1 Some Basics of Algebra^]]

Latest revision as of 15:11, 28 August 2022

Addition / multiplication for  $q = 5$  and  $q = 6$

Here we consider the sets of numbers

  • $Z_5 = \{0, \, 1, \, 2, \, 3, \, 4\} \ \Rightarrow \ q = 5$,
  • $Z_6 = \{0, \, 1, \, 2, \, 3, \, 4,\, 5\} \ \Rightarrow \ q = 6$.


In the adjacent graph,  the (partially incomplete)  addition and multiplication tables for  $q = 5$  and  $q = 6$  are given,  where both addition  ("$+$")  and multiplication  ("$\hspace{0.05cm}\cdot\hspace{0.05cm}$")  modulo  $q$  are to be understood.

To be checked is whether the number sets  $Z_5$  and  $Z_6$  satisfy all the conditions of a Galois field  $\rm GF(5)$  and  $\rm GF(6)$,  respectively.

In the  "theory section"  a total of eight conditions are mentioned,  all of which must be met.  You are to check only two of these conditions:

$\rm(D)$  For all elements there is an  additive inverse  (Inverse  for  "$+$"):

$$\forall \hspace{0.15cm} z_i \in {\rm GF}(q),\hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_A}(z_i) \in {\rm GF}(q)\text{:}\hspace{0.5cm}z_i + {\rm Inv_A}(z_i) = 0 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_A}(z_i) = -z_i \hspace{0.05cm}.$$

$\rm(E)$  All elements have a  multiplicative inverse  (Inverse  for  "$\hspace{0.05cm}\cdot\hspace{0.05cm}$"):

$$\forall \hspace{0.15cm} z_i \in {\rm GF}(q),\hspace{0.15cm} z_i \ne 0, \hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_M}(z_i) \in {\rm GF}(q)\text{:}\hspace{0.5cm}z_i \cdot {\rm Inv_M}(z_i) = 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = z_i^{-1}\hspace{0.05cm}.$$

The other conditions for a Galois field, viz.

  • Closure,
  • Existence of zero– and identity element,
  • validity of commutative law, associative law and distributive law


are satisfied by both,  $Z_5$  and  $Z_6$.



Hints:  The exercise refers to the chapter  "Some Basics of Algebra".



Questions

1

Complete the addition table for  $q = 5$.  Enter the following values:

$A_{04} \ = \ $

$A_{14} \ = \ $

$A_{44} \ = \ $

2

Complete the multiplication table for  $q = 5$.  Enter the following values:

$M_{04} \ = \ $

$M_{14} \ = \ $

$M_{44} \ = \ $

3

Does the  $Z_5$  set satisfy the conditions of a Galois field?

Yes.
No,  there is not an additive inverse for all elements  $(0, \hspace{0.05cm}\text{...} \hspace{0.1cm}, 4)$ .
No,  the elements  $1, \hspace{0.05cm}\text{...} \hspace{0.1cm}, 4$  do not all have a multiplicative inverse.

4

Does the  $Z_6$  set satisfy the conditions of a Galois field?

Yes.
No,  there is not an additive inverse for all elements  $(0, \hspace{0.05cm}\text{...} \hspace{0.1cm}, 5)$ .
No,  the elements  $1, \hspace{0.05cm}\text{...} \hspace{0.1cm}, 5$  do not all have a multiplicative inverse.

5

The number sets  $Z_2, \ Z_3, \ Z_5$  and $Z_7$  yield a Galois field,  but the sets  $Z_4, \ Z_6, \ Z_8, \ Z_9$  do not.  What do you conclude from this?

$Z_{10} = \{0, \, 1, \, 2, \, 3, \, 4, \, 5, \, 6, \, 7, \, 8, \, 9\}$ is a Galois field?
$Z_{11} = \{0, \, 1, \, 2, \, 3, \, 4, \,5, \, 6, \, 7, \, 8, \, 9, \, 10\}$ is a Galois field?
$Z_{12} = \{0, \, 1, \, 2, \, 3, \, 4, \, 5, \, 6, \, 7, \, 8, \, 9, \, 10, \, 11\}$ is a Galois field?


Solution

(1)  In general,  for  $0 ≤ \mu ≤ 4 \text{:} \hspace{0.2cm} A_{\mu 4} = (\mu + 4) \, {\rm mod} \, 5$.  It follows:

$$A_{04} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (0+4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 4}\hspace{0.05cm},\hspace{0.2cm}A_{14}=(1+4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 0}\hspace{0.05cm},\hspace{0.2cm}A_{24}=(2+4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.05cm},$$
$$A_{34} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (3+4)\hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5= 2\hspace{0.05cm},\hspace{0.2cm}A_{44}=(4+4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$

Due to the commutative law of addition,

$$z_i + z_j = z_j + z_i \hspace{0.5cm} {\rm for \hspace{0.2cm}all\hspace{0.2cm} } z_i, z_j \in Z_5\hspace{0.05cm},$$

the last column of the addition table is of course identical to the last row of the same table.


(2)  Now $M_{\mu 4} = (\mu \cdot 4) \, {\rm mod} \, 5$  and we obtain:

$$M_{04} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (0\cdot4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 0}\hspace{0.05cm},\hspace{0.2cm}M_{14}=(1\cdot4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 4}\hspace{0.05cm},\hspace{0.2cm}M_{24}=(2\cdot4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 3\hspace{0.05cm},$$
$$M_{34} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (3\cdot4)\hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 2\hspace{0.05cm},\hspace{0.2cm}M_{44}=(4\cdot 4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 1}\hspace{0.05cm}.$$

Since multiplication is also commutative,  the last column in the multiplication table again matches the last row.


Addition/multiplication tables for  $q = 5$

(3)  The graph shows the full addition and multiplication tables for  $q = 5$.  You can see:

  • In the addition table there is exactly one zero in each row  (and also in each column). 
  • So for every  $z_i ∈ Z_5$  there is an  ${\rm Inv}_{\rm A} (z_i)$  that satisfies the condition  $[z_i + {\rm Inv}_{\rm A}(z_i)] \, {\rm mod} \, 5 = 0$:
$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Inv_A}(z_i) = 0 \hspace{0.05cm},$$
$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Inv_A}(z_i) = (-1) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 4 \hspace{0.05cm},$$
$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Inv_A}(z_i) = (-2) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 3 \hspace{0.05cm},$$
$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 3\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Inv_A}(z_i) = (-3) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 2 \hspace{0.05cm},$$
$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 4\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Inv_A}(z_i) = (-4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1 \hspace{0.05cm}.$$
  • In the multiplication table we leave the zero element  (first row and first column)  out of consideration.
  • In all other rows and columns of the lower table there is indeed exactly one each. 
  • From the condition $[z_i \cdot {\rm Inv}_{\rm M}(z_i)] \, {\rm mod} \, 5 = 1$  one obtains:
$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_i \cdot {\rm Inv_M}(z_i) = 1\hspace{0.05cm},$$
$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 3 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_i \cdot {\rm Inv_M}(z_i) = 6 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1 \hspace{0.05cm},$$
$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 3 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 2 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_i \cdot {\rm Inv_M}(z_i) = 6 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1 \hspace{0.05cm},$$
$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 4 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 4 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_i \cdot {\rm Inv_M}(z_i) = 16 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1 \hspace{0.05cm}.$$
  • Since both the required additive and multiplicative inverses exist   ⇒   $Z_5$ describes a Galois field $\rm GF(5)$  
  • Correct is the proposed solution 1.


(4)  From the blue addition table on the statement page,  we see that all numbers  $(0, \, 1, \, 2, \, 3, \, 4, \, 5)$  of the set $Z_6$  have an additive inverse

  ⇒   in each row  (and column)  there is exactly one zero.

  • On the other hand,  a multiplicative inverse  ${\rm Inv}_{\rm M}(z_i)$  exists only for  $z_i = 1$  and  $z_i = 5$,  viz.
$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_i \cdot {\rm Inv_M}(z_i) = 1\hspace{0.05cm},$$
$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 5 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 5 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_i \cdot {\rm Inv_M}(z_i) = 25 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 6 = 1 \hspace{0.05cm}.$$
  • For  $z_i = 2, \ z_i = 3$ and $z_i = 4$,  we find no element  $z_j$,  so that  $(z_i \cdot z_j) \, {\rm mod} \, 6 = 1$.
  • Correct is the proposed solution 3   ⇒   the blue tables for  $q = 6$  do not yield a Galois field  $\rm GF(6)$.


(5)  Correct is the  proposed solution 2:

  • A finite number set  $Z_q = \{0, \, 1, \hspace{0.05cm} \text{...} \hspace{0.1cm} , \, q-1\}$  of natural numbers leads to a Galois field only if  $q$  is a prime number.
  • Of the number sets mentioned above,  this is true only for  $Z_{11}$.