Difference between revisions of "Aufgaben:Exercise 2.2Z: Discrete Random Variables"

From LNTwww
 
(7 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Momente einer diskreten Zufallsgröße
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Moments_of_a_Discrete_Random_Variable
 
}}
 
}}
  
  
 
[[File:P_ID84__Sto_Z_2_2.png|right|frame|Different rectangular signals]]
 
[[File:P_ID84__Sto_Z_2_2.png|right|frame|Different rectangular signals]]
Let be given three discrete random variables  $a$,  $b$  and  $c$,  which are defined as the current values of the represented signals.  These have the following properties:
+
Let be given three discrete random variables  $a$,  $b$  and  $c$,  which are defined as the instantaneous  values of the represented signals.  These have the following properties:
  
*The random variable  $a$  can take the values  $+1$  and  $-1$  with equal probability.
+
*The random variable  $a$  can take the two values  $+1$  and  $-1$  with equal probability.
*The random variable  $b$  is also two-point distributed, but with  ${\rm Pr}(b = 1) = p$  and  ${\rm Pr}(b = 0) = 1 - p$.
+
*The random variable  $b$  is also two-point distributed,   but with  ${\rm Pr}(b = 1) = p$  and  ${\rm Pr}(b = 0) = 1 - p$.
*The probabilities of  $c$  be  ${\rm Pr}(c = 0) = 1/2$  and  ${\rm Pr}(c = +1) = Pr(c = -1) =1/4$.
+
*The probabilities of the random variable  $c$  be  ${\rm Pr}(c = 0) = 1/2$  and  ${\rm Pr}(c = +1) = Pr(c = -1) =1/4$.
*There are no statistical dependencies between the three random variables  $a$,  $b$  and  $c$  .
+
*There are no statistical dependencies between the three random variables  $a$,  $b$  and  $c$.
*Another random variable  $d=a$,  $b$  and  $c$  is formed from the random variables  $d=a-2 b+c$ .
+
*Another random variable  $d$  is formed from the random variables  $a$,  $b$  and  $c$:
 +
:$$d=a-2 b+c.$$  
  
 
+
The graph shows sections of these random variables.  It can be seen that  $d$  can take all integer values between  $-4$  and  $+2$ .
The graph shows sections of these four random variables.  It can be seen that  $d$  can take all integer values between  $-4$  and  $+2$ .
 
  
  
Line 24: Line 24:
 
Hints:
 
Hints:
 
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Momente_einer_diskreten_Zufallsgröße|Moments of a Discrete Random Variable]].
 
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Momente_einer_diskreten_Zufallsgröße|Moments of a Discrete Random Variable]].
+
*The topic of this chapter is illustrated with examples in the&nbsp;  (German language)&nbsp;  learning video<br> &nbsp; &nbsp; [[Momentenberechnung_bei_diskreten_Zufallsgrößen_(Lernvideo)|"Momentenberechnung bei diskreten Zufallsgrößen"]] &nbsp; &rArr; &nbsp; "Calculating Moments for Discrete-Valued Random Variables"
**The topic of this chapter is illustrated with examples in the&nbsp;  (German language)&nbsp;  learning video<br> [[Momentenberechnung_bei_diskreten_Zufallsgrößen_(Lernvideo)|Momentenberechnung bei diskreten Zufallsgrößen]]&nbsp; $\Rightarrow$ &nbsp; Calculating Moments for Discrete-Valued Random Variables  
 
  
  
Line 33: Line 32:
 
<quiz display=simple>
 
<quiz display=simple>
  
{What is the dispersion (standard deviation) of the random variable $a$?
+
{What is the standard deviation of the random variable&nbsp; $a$?
 
|type="{}"}
 
|type="{}"}
 
$\sigma_a \ = \ $ { 1 3% }
 
$\sigma_a \ = \ $ { 1 3% }
  
  
{What is the dispersion of the random variable&nbsp; $b$?&nbsp; Set&nbsp; $p = 0.25$.
+
{What is the standard deviation of the random variable&nbsp; $b$?&nbsp; Set&nbsp; $p = 0.25$.
 
|type="{}"}
 
|type="{}"}
 
$\sigma_b \ = \ $ { 0.433 3% }
 
$\sigma_b \ = \ $ { 0.433 3% }
  
  
{What is the spread of the random variable $c$?
+
{What is the standard deviation of the random variable&nbsp; $c$?
 
|type="{}"}
 
|type="{}"}
 
$\sigma_c \ = \ $ { 0.707 3% }
 
$\sigma_c \ = \ $ { 0.707 3% }
Line 53: Line 52:
  
  
{What is the root mean square value&nbsp; $m_{2d}$&nbsp; of this random variable?
+
{What is the second moment value&nbsp; (second order moment)&nbsp; $m_{2d}$&nbsp; of this random variable?
 
|type="{}"}
 
|type="{}"}
 
$m_{2d}\ = \ $ { 2.5 3% }
 
$m_{2d}\ = \ $ { 2.5 3% }
  
  
{What is the dispersion&nbsp; $\sigma_d$?
+
{What is the standard deviation&nbsp; $\sigma_d$?
 
|type="{}"}
 
|type="{}"}
 
$\sigma_d\ = \ $ { 1.5 3% }
 
$\sigma_d\ = \ $ { 1.5 3% }
Line 67: Line 66:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Aufgrund der Symmetrie gilt:
+
'''(1)'''&nbsp; Due to the symmetry holds:
 
:$$\rm \it m_{\it a}=\rm 0; \hspace{0.5cm}\it m_{\rm 2\it a}=\rm 0.5\cdot (-1)^2 + 0.5\cdot (1)^2{ = 1}.$$
 
:$$\rm \it m_{\it a}=\rm 0; \hspace{0.5cm}\it m_{\rm 2\it a}=\rm 0.5\cdot (-1)^2 + 0.5\cdot (1)^2{ = 1}.$$
  
*Daraus erh&auml;lt man mit dem Satz von Steiner:
+
*From this one obtains with Steiner's theorem:
:$$\it\sigma_a^{\rm 2} = \rm\sqrt{1-0^2}=1 \hspace{0.5cm}bzw. \hspace{0.5cm}\it\sigma_a\hspace{0.15cm} \underline{=\rm 1}.$$
+
:$$\it\sigma_a^{\rm 2} = \rm\sqrt{1-0^2}=1 \hspace{0.5cm}or \hspace{0.5cm}\it\sigma_a\hspace{0.15cm} \underline{=\rm 1}.$$
 
 
  
  
'''(2)'''&nbsp; Allgemein gilt f&uuml;r das Moment&nbsp; $k$&ndash;ter Ordnung:
+
'''(2)'''&nbsp; In general, for the&nbsp; $k$&ndash;th order moment:
 
:$$ m_{k}=(1-p)\cdot 0^{ k} + p\cdot 1^{k}= p.$$
 
:$$ m_{k}=(1-p)\cdot 0^{ k} + p\cdot 1^{k}= p.$$
  
*Daraus folgt mit&nbsp; $p = 1/4$:
+
*From this follows with&nbsp; $p = 1/4$&nbsp; and&nbsp; $k=2$:
 
:$$m_{b}= m_{2b}= p, \hspace{0.5cm} \sigma_{\it b}=\sqrt{p\cdot (1- p)}\hspace{0.15cm} \underline{=\rm 0.433} .$$
 
:$$m_{b}= m_{2b}= p, \hspace{0.5cm} \sigma_{\it b}=\sqrt{p\cdot (1- p)}\hspace{0.15cm} \underline{=\rm 0.433} .$$
  
  
 
+
'''(3)'''&nbsp; For the random variable&nbsp; $c$&nbsp; holds:
'''(3)'''&nbsp; F&uuml;r die Zufallsgr&ouml;&szlig;e&nbsp; $c$&nbsp; gilt:
+
:$$m_{\it c} = 0\hspace{0.3cm} ({\rm symmetric\hspace{0.1cm}um\hspace{0.1cm}0)},$$
:$$m_{\it c} = 0\hspace{0.3cm} ({\rm symmetrisch\hspace{0.1cm}um\hspace{0.1cm}0)},$$
 
 
:$$ m_{2\it c}= {1}/{4}\cdot(-1)^2+{1}/{2}\cdot 0^2+{1}/{4}\cdot (1)^2={1}/{2} \hspace{0.5cm}$$
 
:$$ m_{2\it c}= {1}/{4}\cdot(-1)^2+{1}/{2}\cdot 0^2+{1}/{4}\cdot (1)^2={1}/{2} \hspace{0.5cm}$$
 
:$$\Rightarrow \hspace{0.5cm}\sigma_{\it c}=\rm \sqrt{1/2}\hspace{0.15cm} \underline{=0.707}.$$
 
:$$\Rightarrow \hspace{0.5cm}\sigma_{\it c}=\rm \sqrt{1/2}\hspace{0.15cm} \underline{=0.707}.$$
  
  
 
+
'''(4)'''&nbsp; According to the general rules for expected values, with&nbsp; $p = 0.25$:
'''(4)'''&nbsp; Nach den allgemeinen Regeln f&uuml;r Erwartungswerte gilt mit&nbsp; $p = 0.25$:
 
 
:$$m_{\it d} = {\rm E}\big[a-2 b+c\big]= {\rm E}\big[a\big] \hspace{0.1cm} -\hspace{0.1cm}\rm 2 \hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[ b\big]\hspace{0.1cm}+\hspace{0.1cm} {\rm E}\big[ c\big] =  m_{ a}\hspace{0.1cm}-\hspace{0.1cm}2\hspace{0.05cm}\cdot\hspace{0.05cm} m_{\it b}\hspace{0.1cm}+\hspace{0.1cm} m_{\it c} =    0-2\hspace{0.05cm}\cdot\hspace{0.05cm} p + 0 \hspace{0.15cm} \underline{= -0.5}.$$
 
:$$m_{\it d} = {\rm E}\big[a-2 b+c\big]= {\rm E}\big[a\big] \hspace{0.1cm} -\hspace{0.1cm}\rm 2 \hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[ b\big]\hspace{0.1cm}+\hspace{0.1cm} {\rm E}\big[ c\big] =  m_{ a}\hspace{0.1cm}-\hspace{0.1cm}2\hspace{0.05cm}\cdot\hspace{0.05cm} m_{\it b}\hspace{0.1cm}+\hspace{0.1cm} m_{\it c} =    0-2\hspace{0.05cm}\cdot\hspace{0.05cm} p + 0 \hspace{0.15cm} \underline{= -0.5}.$$
  
  
 
+
'''(5)'''&nbsp; Analogous to the subtask&nbsp; '''(4)'''&nbsp; we obtain for the second order moment:
'''(5)'''&nbsp; Analog zur Teilaufgabe&nbsp; '''(4)'''&nbsp; erh&auml;lt man für den quadratischen Mittelwert:
 
 
:$$m_{2d}= {\rm E}\big[( a-2b+c)^{\rm 2}\big] =  {\rm E}\big[a^{\rm 2}\big]\hspace{0.1cm}+\hspace{0.1cm}4\hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[ b^{\rm 2}\big]\hspace{0.1cm}+\hspace{0.1cm} {\rm E}\big[c^{\rm 2}\big]\hspace{0.1cm}  -  \hspace{0.1cm}4\hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[a\hspace{0.05cm}\cdot \hspace{0.05cm}b\big]\hspace{0.1cm}+\hspace{0.1cm} 2\hspace{0.05cm}\cdot\hspace{0.05cm}{\rm E}\big[ a\hspace{0.05cm}\cdot \hspace{0.05cm}c\big]\hspace{0.1cm}-\hspace{0.1cm} 4\hspace{0.05cm}\cdot\hspace{0.05cm}{\rm E}\big[ b\hspace{0.05cm}\cdot \hspace{0.05cm}c\big].$$
 
:$$m_{2d}= {\rm E}\big[( a-2b+c)^{\rm 2}\big] =  {\rm E}\big[a^{\rm 2}\big]\hspace{0.1cm}+\hspace{0.1cm}4\hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[ b^{\rm 2}\big]\hspace{0.1cm}+\hspace{0.1cm} {\rm E}\big[c^{\rm 2}\big]\hspace{0.1cm}  -  \hspace{0.1cm}4\hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[a\hspace{0.05cm}\cdot \hspace{0.05cm}b\big]\hspace{0.1cm}+\hspace{0.1cm} 2\hspace{0.05cm}\cdot\hspace{0.05cm}{\rm E}\big[ a\hspace{0.05cm}\cdot \hspace{0.05cm}c\big]\hspace{0.1cm}-\hspace{0.1cm} 4\hspace{0.05cm}\cdot\hspace{0.05cm}{\rm E}\big[ b\hspace{0.05cm}\cdot \hspace{0.05cm}c\big].$$
  
*Da aber&nbsp; $a$&nbsp; und&nbsp; $b$&nbsp; statistisch voneinander unabh&auml;ngig sind,&nbsp; gilt auch:
+
*But since&nbsp; $a$&nbsp; and&nbsp; $b$&nbsp; are statistically independent of each other,&nbsp; also holds:
:$${\rm E}\big[a\cdot b\big] = {\rm E}\big[ a\big] \cdot {\rm E}\big[ b\big]= m_{ a}\cdot m_{ b} = 0, \hspace{0.2cm} {\rm da}\hspace{0.2cm} m_{ a}=\rm 0.$$
+
:$${\rm E}\big[a\cdot b\big] = {\rm E}\big[ a\big] \cdot {\rm E}\big[ b\big]= m_{ a}\cdot m_{ b} = 0, \hspace{0.2cm} {\rm da}\hspace{0.2cm} m_{ a}=\rm 0.$$
  
*Gleiches gilt f&uuml;r die anderen gemischten Terme.&nbsp; Daher erh&auml;lt man mit&nbsp; $p = 0.25$:
+
*The same holds for the other mixed terms.&nbsp; Therefore, using&nbsp; $p = 0.25$, we obtain:
:$$ m_{2 d}=m_{2 a}+4\cdot m_{ 2 b}+m_{ 2 c}=1+4\cdot p+0.5\hspace{0.15cm} \underline{=\rm 2.5}.$$
+
:$$ m_{2 d}=m_{2 a}+4\cdot m_{ 2 b}+m_{ 2 c}=1+4\cdot p+0.5\hspace{0.15cm} \underline{=\rm 2.5}.$$
  
  
 +
'''(6)'''&nbsp; For general&nbsp; $p$ &nbsp;resp.&nbsp; for&nbsp; $p = 0.25$&nbsp; results:
 +
:$$\sigma_{\it d}^{\rm 2}=1.5+4\cdot p - 4 \cdot p^{\rm 2}=2.25 \hspace{0.5cm}\Rightarrow \hspace{0.5cm}  \sigma_{d}\hspace{0.15cm} \underline{=\rm 1.5}.$$
  
'''(6)'''&nbsp; Für allgemeines&nbsp; $p$ &nbsp;bzw.&nbsp; f&uuml;r&nbsp; $p = 0.25$&nbsp; ergibt sich:
+
*The maximum variance for&nbsp; $p = 0.50$&nbsp;results in&nbsp; $\sigma_{\it d}^{\rm 2}=2.50$.
:$$\sigma_{\it d}^{\rm 2}=1.5+4\cdot p - 4 \cdot p^{\rm 2}=2.25 \hspace{0.5cm}\Rightarrow \hspace{0.5cm}  \sigma_{d}\hspace{0.15cm} \underline{=\rm 1.5}.$$
 
  
*Die maximale Varianz erg&auml;be sich f&uuml;r&nbsp; $p = 0.50$&nbsp; &nbsp;zu&nbsp; $\sigma_{\it d}^{\rm 2}=2.50$.
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 14:20, 18 January 2023


Different rectangular signals

Let be given three discrete random variables  $a$,  $b$  and  $c$,  which are defined as the instantaneous values of the represented signals.  These have the following properties:

  • The random variable  $a$  can take the two values  $+1$  and  $-1$  with equal probability.
  • The random variable  $b$  is also two-point distributed,  but with  ${\rm Pr}(b = 1) = p$  and  ${\rm Pr}(b = 0) = 1 - p$.
  • The probabilities of the random variable  $c$  be  ${\rm Pr}(c = 0) = 1/2$  and  ${\rm Pr}(c = +1) = Pr(c = -1) =1/4$.
  • There are no statistical dependencies between the three random variables  $a$,  $b$  and  $c$.
  • Another random variable  $d$  is formed from the random variables  $a$,  $b$  and  $c$:
$$d=a-2 b+c.$$

The graph shows sections of these random variables.  It can be seen that  $d$  can take all integer values between  $-4$  and  $+2$ .




Hints:


Questions

1

What is the standard deviation of the random variable  $a$?

$\sigma_a \ = \ $

2

What is the standard deviation of the random variable  $b$?  Set  $p = 0.25$.

$\sigma_b \ = \ $

3

What is the standard deviation of the random variable  $c$?

$\sigma_c \ = \ $

4

Calculate the mean  $m_d$  of the random variable  $d$  for $p = 0.25$.

$m_d\ = \ $

5

What is the second moment value  (second order moment)  $m_{2d}$  of this random variable?

$m_{2d}\ = \ $

6

What is the standard deviation  $\sigma_d$?

$\sigma_d\ = \ $


Solution

(1)  Due to the symmetry holds:

$$\rm \it m_{\it a}=\rm 0; \hspace{0.5cm}\it m_{\rm 2\it a}=\rm 0.5\cdot (-1)^2 + 0.5\cdot (1)^2{ = 1}.$$
  • From this one obtains with Steiner's theorem:
$$\it\sigma_a^{\rm 2} = \rm\sqrt{1-0^2}=1 \hspace{0.5cm}or \hspace{0.5cm}\it\sigma_a\hspace{0.15cm} \underline{=\rm 1}.$$


(2)  In general, for the  $k$–th order moment:

$$ m_{k}=(1-p)\cdot 0^{ k} + p\cdot 1^{k}= p.$$
  • From this follows with  $p = 1/4$  and  $k=2$:
$$m_{b}= m_{2b}= p, \hspace{0.5cm} \sigma_{\it b}=\sqrt{p\cdot (1- p)}\hspace{0.15cm} \underline{=\rm 0.433} .$$


(3)  For the random variable  $c$  holds:

$$m_{\it c} = 0\hspace{0.3cm} ({\rm symmetric\hspace{0.1cm}um\hspace{0.1cm}0)},$$
$$ m_{2\it c}= {1}/{4}\cdot(-1)^2+{1}/{2}\cdot 0^2+{1}/{4}\cdot (1)^2={1}/{2} \hspace{0.5cm}$$
$$\Rightarrow \hspace{0.5cm}\sigma_{\it c}=\rm \sqrt{1/2}\hspace{0.15cm} \underline{=0.707}.$$


(4)  According to the general rules for expected values, with  $p = 0.25$:

$$m_{\it d} = {\rm E}\big[a-2 b+c\big]= {\rm E}\big[a\big] \hspace{0.1cm} -\hspace{0.1cm}\rm 2 \hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[ b\big]\hspace{0.1cm}+\hspace{0.1cm} {\rm E}\big[ c\big] = m_{ a}\hspace{0.1cm}-\hspace{0.1cm}2\hspace{0.05cm}\cdot\hspace{0.05cm} m_{\it b}\hspace{0.1cm}+\hspace{0.1cm} m_{\it c} = 0-2\hspace{0.05cm}\cdot\hspace{0.05cm} p + 0 \hspace{0.15cm} \underline{= -0.5}.$$


(5)  Analogous to the subtask  (4)  we obtain for the second order moment:

$$m_{2d}= {\rm E}\big[( a-2b+c)^{\rm 2}\big] = {\rm E}\big[a^{\rm 2}\big]\hspace{0.1cm}+\hspace{0.1cm}4\hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[ b^{\rm 2}\big]\hspace{0.1cm}+\hspace{0.1cm} {\rm E}\big[c^{\rm 2}\big]\hspace{0.1cm} - \hspace{0.1cm}4\hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[a\hspace{0.05cm}\cdot \hspace{0.05cm}b\big]\hspace{0.1cm}+\hspace{0.1cm} 2\hspace{0.05cm}\cdot\hspace{0.05cm}{\rm E}\big[ a\hspace{0.05cm}\cdot \hspace{0.05cm}c\big]\hspace{0.1cm}-\hspace{0.1cm} 4\hspace{0.05cm}\cdot\hspace{0.05cm}{\rm E}\big[ b\hspace{0.05cm}\cdot \hspace{0.05cm}c\big].$$
  • But since  $a$  and  $b$  are statistically independent of each other,  also holds:
$${\rm E}\big[a\cdot b\big] = {\rm E}\big[ a\big] \cdot {\rm E}\big[ b\big]= m_{ a}\cdot m_{ b} = 0, \hspace{0.2cm} {\rm da}\hspace{0.2cm} m_{ a}=\rm 0.$$
  • The same holds for the other mixed terms.  Therefore, using  $p = 0.25$, we obtain:
$$ m_{2 d}=m_{2 a}+4\cdot m_{ 2 b}+m_{ 2 c}=1+4\cdot p+0.5\hspace{0.15cm} \underline{=\rm 2.5}.$$


(6)  For general  $p$  resp.  for  $p = 0.25$  results:

$$\sigma_{\it d}^{\rm 2}=1.5+4\cdot p - 4 \cdot p^{\rm 2}=2.25 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} \sigma_{d}\hspace{0.15cm} \underline{=\rm 1.5}.$$
  • The maximum variance for  $p = 0.50$ results in  $\sigma_{\it d}^{\rm 2}=2.50$.