Difference between revisions of "Aufgaben:Exercise 2.3: Algebraic Sum of Binary Numbers"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:EN_Sto_A_2_3.png|right|frame|Considered random generator]]
+
[[File:EN_Sto_A_2_3_neu.png|right|frame|Considered random generator]]
 
A random number generator outputs a binary random number   $x_\nu$  at each clock time  $(\nu)$ , which can be  $0$  or  $1$ .
 
A random number generator outputs a binary random number   $x_\nu$  at each clock time  $(\nu)$ , which can be  $0$  or  $1$ .
 
*The value "1" occurs with probability  $p = 0.25$ .  
 
*The value "1" occurs with probability  $p = 0.25$ .  

Revision as of 17:47, 10 December 2021

Considered random generator

A random number generator outputs a binary random number   $x_\nu$  at each clock time  $(\nu)$ , which can be  $0$  or  $1$ .

  • The value "1" occurs with probability  $p = 0.25$ .
  • The individual values  $x_\nu$  are statistically independent of each other.


The binary numbers are stored in a shift register withnbsp; $I = 6$  memory cells.

At each clock instant, the contents of this shift register are shifted one place to the right and the algebraic sum  $y_\nu$  of the shift register contents is formed in each case:

$$y_{\nu}=\sum\limits_{i=0}^{5}x_{\nu-i}=x_{\nu}+x_{\nu-1}+\ \text{...} \ +x_{\nu-5}.$$




Hints:



Questions

1

What values can the sum  $y$  take?  What is the largest possible value?

$y_\max \ = \ $

2

Calculate the probability that  $y$  is greater than  $2$ .

${\rm Pr}(y > 2) \ = \ $

3

What is the mean value of the random variable  $y$ ?

$m_y \ =$

4

Find the ***standard deviation*** of the random variable  $y$.

$\sigma_y \ = \ $

5

Are the random numbers  $y_\nu$  statistically independent?  Justify your result.

The random numbers are statistically independent.
The random numbers are statistically dependent.

6

What is the conditional probability that  $y_\nu$  equals  $\mu$  again if  $y_{\nu-1} = \mu$  occured previously?  $(\mu = 0, \ 1, \ \text{...} \ , \ I)$.

${\rm Pr}(y_\nu = \mu \hspace{0.05cm} | \hspace{0.05cm} y_{\nu-1} = \mu ) \ = \ $


Solution

(1)  Each cell can contain a  $0$  or a  $1$ .  Therefore, the sum can take all integer values between  $0$  ánd  $6$ :

$$y_{\nu}\in\{0,1,\ \text{...} \ ,6\}\hspace{0.3cm}\Rightarrow\hspace{0.3cm} y_{\rm max} \hspace{0.15cm} \underline{= 6}.$$


(2)  There is a binomial distribution.  Therefore, with  $p = 0.25$:

$${\rm Pr}(y =0)=(1-p)^{\it I}=0.75^6=0.178,$$
$${\rm Pr}(y=1)=\left({ I \atop {1}}\right)\cdot (1-p)^{I-1}\cdot p= \rm 6\cdot 0.75^5\cdot 0.25=0.356,$$
$${\rm Pr}(y=2)=\left({ I \atop { 2}}\right)\cdot (1-p)^{I-2}\cdot p^{\rm 2}= \rm 15\cdot 0.75^4\cdot 0.25^2=0.297,$$
$$\Rightarrow \hspace{0.3cm}{\rm Pr}(y>2)=1-{\rm Pr}(y=0)-{\rm Pr}( y=1)-{\rm Pr}( y=2)\hspace{0.15cm} \underline{=\rm 0.169}.$$


(3)  According to the general equation, the mean of the binomial distribution is:

$$m_y= I\cdot p\hspace{0.15cm} \underline{=\rm 1.5}.$$


(4)  Accordingly, for the dispersion of the binomial distribution:

$$\sigma_y=\sqrt{ I \cdot p \cdot( 1- p)} \hspace{0.15cm} \underline{= \rm 1.061}.$$


(5)  Correct is the proposed solution 2:

  • If   $y_\nu = 0$, then only the values  $0$  and  $1$  can follow at the next time point, but not  $2$, ... , $6$.
  • That is:   The sequence  $ \langle y_\nu \rangle$  has (strong) statistical bindings.


(6)  The probability we are looking for is identical to the probability that the new binary symbol is equal to the symbol dropped out of the shift register. It follows that:

$${\rm Pr} (y_{\nu} = \mu\hspace{0.05cm}| \hspace{0.05cm} y_{\nu-{1}} = \mu) = {\rm Pr}(x_{\nu}= x_{\nu-6}). $$
  • Since the symbols  $x_\nu$  are statistically independent of each other, we can also write for this:
$${\rm Pr}(x_{\nu} = x_{\nu-6}) = {\rm Pr}\big[(x_{\nu}= 1)\hspace{0.05cm}\cap\hspace{0.05cm}(x_{\nu-6}= 1)\hspace{0.05cm}\cup \hspace{0.05cm}(x_\nu=0)\hspace{0.05cm}\cap\hspace{0.05cm}(x_{\nu-6} =0)\big]= p^{2}+(1- p)^{2}=\rm 0.25^2 + 0.75^2\hspace{0.15cm} \underline{ = 0.625}. $$