Difference between revisions of "Aufgaben:Exercise 2.3: Reducible and Irreducible Polynomials"

From LNTwww
Line 44: Line 44:
 
===Questions===
 
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{How many polynomial divisions&nbsp; $(N_{\rm D})$&nbsp; are required to prove exactly that a&nbsp; ${\rm GF}(2)$&ndash;polynomial&nbsp; $a(x)$&nbsp; of degree&nbsp; $m$&nbsp; is irreducible?
+
{How many polynomial divisions&nbsp; $(N_{\rm D})$&nbsp; are required to prove exactly that a&nbsp; ${\rm GF}(2)$ polynomial&nbsp; $a(x)$&nbsp; of degree&nbsp; $m$&nbsp; is irreducible?
 
|type="{}"}
 
|type="{}"}
 
$m = 2 \text{:} \hspace{0.35cm} N_{\rm D} \ = \ ${ 2 3% }
 
$m = 2 \text{:} \hspace{0.35cm} N_{\rm D} \ = \ ${ 2 3% }
Line 50: Line 50:
 
$m = 4 \text{:} \hspace{0.35cm} N_{\rm D} \ = \ ${ 14 3% }
 
$m = 4 \text{:} \hspace{0.35cm} N_{\rm D} \ = \ ${ 14 3% }
  
{Welche der Grad&ndash;2&ndash;Polynome sind irreduzibel?
+
{Which of the degree 2 polynomials are irreducible?
 
|type="[]"}
 
|type="[]"}
 
- $a_1(x) = x^2 + x$,
 
- $a_1(x) = x^2 + x$,
 
+ $a_2(x) = x^2 + x + 1$.
 
+ $a_2(x) = x^2 + x + 1$.
  
{Welche der Grad&ndash;3&ndash;Polynome sind irreduzibel?
+
{Which of the degree 3 polynomials are irreducible?
 
|type="[]"}
 
|type="[]"}
 
- $a_3(x) = x^3$,
 
- $a_3(x) = x^3$,
Line 63: Line 63:
 
+ $a_7(x) = x^3 + x^2 + 1$.
 
+ $a_7(x) = x^3 + x^2 + 1$.
  
{Welche der Grad&ndash;4&ndash;Polynome sind irreduzibel?
+
{Which of the degree 4 polynomials are irreducible?
 
|type="[]"}
 
|type="[]"}
 
- $a_8(x) = x^4 + 1$,
 
- $a_8(x) = x^4 + 1$,
Line 70: Line 70:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Das Polynom $a(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \hspace{0.1cm}... \hspace{0.1cm} + a_m \cdot x^{m}$
+
'''(1)'''&nbsp; The polynomial $a(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \hspace{0.1cm}... \hspace{0.1cm} + a_m \cdot x^{m}$
*mit $a_m = 1$  
+
*with $a_m = 1$  
*und gegebenen Koeffizienten $a_0, \ a_1, \hspace{0.05cm}\text{ ...} \hspace{0.1cm} , \ a_{m-1}$ (jeweils $0$ oder $1$)  
+
*and given coefficients $a_0, \ a_1, \hspace{0.05cm}\text{ ...} \hspace{0.1cm} , \ a_{m-1}$ ($0$ or $1$ in each case).
  
  
ist dann irreduzibel, wenn es kein einziges Polynom $q(x)$ gibt, so dass die Modulo&ndash;$2$&ndash;Division $a(x)/q(x)$ keinen Rest ergibt. Der Grad aller zu betrachtenden Teilerpolynome $q(x)$ ist mindestens $1$ und höchstens $m-1$.
+
is irreducible if there is no single polynomial $q(x)$ such that the modulo $2$ division $a(x)/q(x)$ yields no remainder. The degree of all divisor polynomials $q(x)$ to be considered is at least $1$ and at most $m-1$.
* Für $m = 2$ sind zwei Polynomdivisionen $a(x)/q_i(x)$ erforderlich, nämlich mit
+
* For $m = 2$ two polynomial divisions $a(x)/q_i(x)$ are necessary, namely with
:$$q_1(x) = x \hspace{0.5cm}{\rm und}\hspace{0.5cm}q_2(x) = x+1
+
:$$q_1(x) = x \hspace{0.5cm}{\rm and}\hspace{0.5cm}q_2(x) = x+1
 
\hspace{0.3cm} \Rightarrow\hspace{0.3cm}N_{\rm D}\hspace{0.15cm}\underline{= 2}
 
\hspace{0.3cm} \Rightarrow\hspace{0.3cm}N_{\rm D}\hspace{0.15cm}\underline{= 2}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
* Für $m = 3$ gibt es schon $N_{\rm D} \ \underline{= 6}$ Teilerpolynome, nämlich neben $q_1(x) = x$ und $q_2(x) = x + 1$ noch
+
* For $m = 3$ there are already $N_{\rm D} \ \underline{= 6}$ divisor polynomials, namely besides $q_1(x) = x$ and $q_2(x) = x + 1$ also
 
:$$q_3(x) = x^2\hspace{0.05cm},\hspace{0.2cm}q_4(x) = x^2+1\hspace{0.05cm},\hspace{0.2cm}
 
:$$q_3(x) = x^2\hspace{0.05cm},\hspace{0.2cm}q_4(x) = x^2+1\hspace{0.05cm},\hspace{0.2cm}
 
q_5(x) = x^2 + x\hspace{0.05cm},\hspace{0.2cm}q_6(x) = x^2+x+1\hspace{0.05cm}.$$
 
q_5(x) = x^2 + x\hspace{0.05cm},\hspace{0.2cm}q_6(x) = x^2+x+1\hspace{0.05cm}.$$
  
* Für $m = 4$ müssen außer $q_1(x), \hspace{0.05cm}\text{ ...} \hspace{0.1cm} , \ q_6(x)$ auch noch alle möglichen Teilerpolynome mit Grad $m = 3$ berücksichtigt werden, also:
+
* For $m = 4$, besides $q_1(x), \hspace{0.05cm}\text{ ...} \hspace{0.1cm} , \ q_6(x)$ all possible divisor polynomials with degree $m = 3$ must also be considered, thus:
 
:$$q_i(x) =  a_0 + a_1 \cdot x + a_2 \cdot x^2 + x^3\hspace{0.05cm},\hspace{0.5cm}a_0, a_1, a_2 \in \{0,1\}  
 
:$$q_i(x) =  a_0 + a_1 \cdot x + a_2 \cdot x^2 + x^3\hspace{0.05cm},\hspace{0.5cm}a_0, a_1, a_2 \in \{0,1\}  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
:Für den Index gilt dabei $7 &#8804; i &#8804; 14 \ \Rightarrow \ N_{\rm D} \ \underline{= 14}$.
+
:For the index, $7 &#8804; i &#8804; 14 \ \Rightarrow \ N_{\rm D} \ \underline{= 14}$.
  
  
'''(2)'''&nbsp; Für das erste Polynom gilt: $a_1(x = 0) = 0$. Deshalb ist dieses Polynom reduzibel: &nbsp; $a_1(x) = x \cdot (x + 1)$.
+
'''(2)'''&nbsp; For the first polynomial holds: $a_1(x = 0) = 0$. Therefore this polynomial is reducible: $a_1(x) = x \cdot (x + 1)$.
  
Dagegen gilt für das zweite Polynom:
+
On the other hand, the following is true for the second polynomial:
 
:$$a_2(x = 0) = 1\hspace{0.05cm},\hspace{0.2cm}a_2(x = 1) = 1
 
:$$a_2(x = 0) = 1\hspace{0.05cm},\hspace{0.2cm}a_2(x = 1) = 1
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Diese notwendige, aber nicht hinreichende Eigenschaft zeigt, dass $a_2(x)$ irreduzibel sein könnte. Der endgültige Beweis ergibt sich erst durch zwei Modulo&ndash;2&ndash;Divisionen:
+
This necessary but not sufficient property shows that $a_2(x)$ could be irreducible. The final proof is obtained only by two modulo 2 divisions:
* $a_2(x)$ geteilt durch $x$ liefert $x + 1$, Rest $r(x) = 1$,
+
* $a_2(x)$ divided by $x$ yields $x + 1$, remainder $r(x) = 1$,
* $a_2(x)$ geteilt durch $x + 1$ liefert $x$, Rest $r(x) = 1$.
+
* $a_2(x)$ divided by $x + 1$ yields $x$, remainder $r(x) = 1$.
  
  
Richtig ist demnach der <u>Lösungsvorschlag 2</u>.
+
The correct solution is therefore <u>solution suggestion 2</u>.
  
  
'''(3)'''&nbsp; Die drei ersten Polynome sind reduzibel, wie die folgenden Rechenergebnisse zeigen:
+
'''(3)'''&nbsp; The first three polynomials are reducible, as the following calculation results show:
 
:$$a_3(x = 0) = 0\hspace{0.05cm},\hspace{0.2cm}a_4(x = 1) = 0\hspace{0.05cm},\hspace{0.2cm}a_5(x = 0) = 0\hspace{0.05cm},\hspace{0.2cm}a_5(x = 1) = 0
 
:$$a_3(x = 0) = 0\hspace{0.05cm},\hspace{0.2cm}a_4(x = 1) = 0\hspace{0.05cm},\hspace{0.2cm}a_5(x = 0) = 0\hspace{0.05cm},\hspace{0.2cm}a_5(x = 1) = 0
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Das hätte man auch durch Nachdenken herausfinden können:
+
This could have been found out by thinking:
 
:$$a_3(x)  \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x \cdot x \cdot x \hspace{0.05cm},$$
 
:$$a_3(x)  \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x \cdot x \cdot x \hspace{0.05cm},$$
 
:$$a_4(x)  \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (x^2 + x + 1)\cdot(x + 1) \hspace{0.05cm},$$
 
:$$a_4(x)  \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (x^2 + x + 1)\cdot(x + 1) \hspace{0.05cm},$$
 
:$$a_5(x)  \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x \cdot (x + 1)\cdot(x + 1) \hspace{0.05cm}.$$
 
:$$a_5(x)  \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x \cdot (x + 1)\cdot(x + 1) \hspace{0.05cm}.$$
  
Das Polynom $a_6(x)$ ist sowohl für $x = 0$ als auch für $x = 1$ ungleich $0$. Das heißt, dass
+
The polynomial $a_6(x)$ is not equal to $0$ for both $x = 0$ and $x = 1$. This means that
* "nichts dagegen spricht", dass $a_6(x)$ irreduzibel ist,
+
* "nothing speaks against" $a_6(x)$ being irreducible,
* die Division durch die irreduziblen Grad&ndash;1&ndash;Polynome $x$ bzw. $x + 1$ nicht ohne Rest möglich ist.
+
* division by the irreducible degree 1 polynomials $x$ and $x + 1$, respectively, is not possible without remainder.
  
  
Da aber auch die Division durch das einzige irreduzible Grad&ndash;2&ndash;Polynom einen Rest liefert, ist bewiesen, dass $a_6(x)$ ein irreduzibles Polynom ist:  
+
However, since division by the single irreducible degree 2 polynomial also yields a remainder, it is proved that $a_6(x)$ is an irreducible polynomial:  
 
:$$(x^3 + x+1)/(x^2 + x+1) = x + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = x\hspace{0.05cm},$$
 
:$$(x^3 + x+1)/(x^2 + x+1) = x + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = x\hspace{0.05cm},$$
  
Mit gleichem Rechengang kann auch gezeigt werden, dass $a_7(x)$ ebenfalls irreduzibel ist &nbsp; &#8658; &nbsp; <u>Lösungsvorschläge 4 und 5</u>.
+
Using the same computational procedure, it can also be shown that $a_7(x)$ is also irreducible &nbsp; &#8658; &nbsp; <u>Solutions 4 and 5</u>.
  
  
'''(4)'''&nbsp; Aus $a_8(x + 1) = 0$ folgt die Reduzibilität von $a_8(x)$. Für die beiden anderen Polynome gilt dagegen:
+
'''(4)'''&nbsp; From $a_8(x + 1) = 0$ follows the reducibility of $a_8(x)$. For the other two polynomials, however, holds:
 
:$$a_9(x = 0)  \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1\hspace{0.05cm},\hspace{0.35cm}a_9(x = 1) = 1  \hspace{0.05cm},$$
 
:$$a_9(x = 0)  \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1\hspace{0.05cm},\hspace{0.35cm}a_9(x = 1) = 1  \hspace{0.05cm},$$
 
:$$a_{10}(x = 0)  \hspace{-0.15cm} \ = \ \hspace{-0.15cm}1\hspace{0.05cm},\hspace{0.2cm}a_{10}(x = 1) = 1  \hspace{0.05cm}.$$
 
:$$a_{10}(x = 0)  \hspace{-0.15cm} \ = \ \hspace{-0.15cm}1\hspace{0.05cm},\hspace{0.2cm}a_{10}(x = 1) = 1  \hspace{0.05cm}.$$
  
Beide könnten also irreduzibel sein. Der exakte Nachweis der Irreduzibilität ist aufwändiger:  
+
So both could be irreducible. The exact proof of irreducibility is more complicated:  
*Man muss zur Überprüfung zwar nicht alle vier Divisorpolynome mit Grad $m = 2$ heranziehen, nämlich $x^2, \ x^2 + 1, \ x^2 + x + 1$, sondern es genügt die Division durch das einzige irreduzible Grad&ndash;2&ndash;Polynom. Man erhält hinsichtlich des Polynoms $a_9(x)$:
+
*It is not necessary to use all four divisor polynomials with degree $m = 2$, namely $x^2, \ x^2 + 1, \ x^2 + x + 1$, but it is sufficient to divide by the only irreducible degree 2 polynomial. One obtains with respect to the polynomial $a_9(x)$:
 
:$$(x^4 + x^3+1)/(x^2 + x+1) = x^2 + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = x\hspace{0.05cm}.$$
 
:$$(x^4 + x^3+1)/(x^2 + x+1) = x^2 + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = x\hspace{0.05cm}.$$
  
Auch die Division durch die beiden irreduziblen Grad&ndash;3&ndash;Polynome liefert jeweils einen Rest:
+
Also the division by the two irreducible degree 3 polynomials yields a remainder in each case:
 
:$$(x^4 + x^3+1)/(x^3 + x+1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = x^2\hspace{0.05cm},$$
 
:$$(x^4 + x^3+1)/(x^3 + x+1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = x^2\hspace{0.05cm},$$
 
:$$(x^4 + x^3+1)/(x^3 + x^2+1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x  \hspace{0.05cm},\hspace{0.95cm}{\rm Rest}\hspace{0.15cm} r(x) = x +1\hspace{0.05cm}.$$
 
:$$(x^4 + x^3+1)/(x^3 + x^2+1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x  \hspace{0.05cm},\hspace{0.95cm}{\rm Rest}\hspace{0.15cm} r(x) = x +1\hspace{0.05cm}.$$
  
Betrachten wir schließlich noch das Polynom $a_{10}(x) = x^4 + x^2 + 1$. Hier gilt
+
Finally, let us consider the polynomial $a_{10}(x) = x^4 + x^2 + 1$. Here holds
 
:$$(x^4 + x^2+1)/(x^2 + x+1) = x^2 + x+1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = 0\hspace{0.05cm}.$$
 
:$$(x^4 + x^2+1)/(x^2 + x+1) = x^2 + x+1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = 0\hspace{0.05cm}.$$
  
Daraus folgt: Nur das Polynom $a_9(x)$ ist irreduzibel &nbsp;&#8658;&nbsp; <u>Lösungsvorschlag 2</u>.
+
It follows: Only the polynomial $a_9(x)$ is irreducible &nbsp;&#8658;&nbsp; <u>Solution suggestion2</u>.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 14:48, 31 August 2022

Polynomials of degree  $m = 2$,  $m = 3$  and  $m = 4$

Important prerequisites for understanding channel coding are knowledge of polynomial properties. In this exercise we consider polynomials of the form

$$a(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \hspace{0.1cm}... \hspace{0.1cm} + a_m \cdot x^{m} \hspace{0.05cm},$$

where for the coefficients  $a_i ∈ {\rm GF}(2) = \{0, \, 1\}$  holds  $(0 ≤ i ≤ m)$ and the highest coefficient is always assumed to  $a_m = 1$ . One refers to  $m$  as the degree  of the polynomial. Adjacent are ten polynomials where the polynomial degree is either  $m = 2$  (red font),  $m = 3$  (blue font) or  $m = 4$  (green font).

A polynomial  $a(x)$  is called reducible if it can be represented as the product of two polynomials  $p(x)$  and  $q(x)$  each of lower degree:

$$a(x) = p(x) \cdot q(x)$$

If this is not possible, that is, if for the polynomial

$$a(x) = p(x) \cdot q(x) + r(x)$$

with a residual polynomial  $r(x) ≠ 0$  holds, then the polynomial is called irreducible. Such irreducible polynomials are of special importance for the description of error correction methods.

The proof that a polynomial  $a(x)$  of degree  $m$  is irreducible requires several polynomial divisions  $a(x)/q(x)$, where the degree of the respective divisor polynomial  $q(x)$  is always smaller than  $m$. Only if all these modulo $2$ divisions always yield a remainder  $r(x) ≠ 0$  is it proved that  $a(x)$  is indeed an irreducible polynomial.

This exact proof is very complex. Necessary conditions for  $a(x)$  to be an irreducible polynomial at all are the two conditions (in nonbinary approach "$x=1$" would have to be replaced by "$x≠0$"):

  • $a(x = 0) = 1$,
  • $a(x = 1) = 1$.


Otherwise, one could write for the polynomial under investigation:

$$a(x) = q(x) \cdot x \hspace{0.5cm}{\rm bzw.}\hspace{0.5cm}a(x) = q(x) \cdot (x+1)\hspace{0.05cm}.$$

The above conditions are necessary, but not sufficient, as the following example shows:

$$a(x) = x^5 + x^4 +1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}a(x = 0) = 1\hspace{0.05cm},\hspace{0.2cm}a(x = 1) = 1 \hspace{0.05cm}.$$

Nevertheless, this polynomial is reducible:

$$a(x) = (x^3 + x +1)(x^2 + x +1) \hspace{0.05cm}.$$



Hints:


Questions

1

How many polynomial divisions  $(N_{\rm D})$  are required to prove exactly that a  ${\rm GF}(2)$ polynomial  $a(x)$  of degree  $m$  is irreducible?

$m = 2 \text{:} \hspace{0.35cm} N_{\rm D} \ = \ $

$m = 3 \text{:} \hspace{0.35cm} N_{\rm D} \ = \ $

$m = 4 \text{:} \hspace{0.35cm} N_{\rm D} \ = \ $

2

Which of the degree 2 polynomials are irreducible?

$a_1(x) = x^2 + x$,
$a_2(x) = x^2 + x + 1$.

3

Which of the degree 3 polynomials are irreducible?

$a_3(x) = x^3$,
$a_4(x) = x^3 + 1$,
$a_5(x) = x^3 + x$,
$a_6(x) = x^3 + x + 1$,
$a_7(x) = x^3 + x^2 + 1$.

4

Which of the degree 4 polynomials are irreducible?

$a_8(x) = x^4 + 1$,
$a_9(x) = x^4 + x^3 + 1$,
$a_{10}(x) = x^4 + x^2 + 1$.


Solution

(1)  The polynomial $a(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \hspace{0.1cm}... \hspace{0.1cm} + a_m \cdot x^{m}$

  • with $a_m = 1$
  • and given coefficients $a_0, \ a_1, \hspace{0.05cm}\text{ ...} \hspace{0.1cm} , \ a_{m-1}$ ($0$ or $1$ in each case).


is irreducible if there is no single polynomial $q(x)$ such that the modulo $2$ division $a(x)/q(x)$ yields no remainder. The degree of all divisor polynomials $q(x)$ to be considered is at least $1$ and at most $m-1$.

  • For $m = 2$ two polynomial divisions $a(x)/q_i(x)$ are necessary, namely with
$$q_1(x) = x \hspace{0.5cm}{\rm and}\hspace{0.5cm}q_2(x) = x+1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}N_{\rm D}\hspace{0.15cm}\underline{= 2} \hspace{0.05cm}.$$
  • For $m = 3$ there are already $N_{\rm D} \ \underline{= 6}$ divisor polynomials, namely besides $q_1(x) = x$ and $q_2(x) = x + 1$ also
$$q_3(x) = x^2\hspace{0.05cm},\hspace{0.2cm}q_4(x) = x^2+1\hspace{0.05cm},\hspace{0.2cm} q_5(x) = x^2 + x\hspace{0.05cm},\hspace{0.2cm}q_6(x) = x^2+x+1\hspace{0.05cm}.$$
  • For $m = 4$, besides $q_1(x), \hspace{0.05cm}\text{ ...} \hspace{0.1cm} , \ q_6(x)$ all possible divisor polynomials with degree $m = 3$ must also be considered, thus:
$$q_i(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + x^3\hspace{0.05cm},\hspace{0.5cm}a_0, a_1, a_2 \in \{0,1\} \hspace{0.05cm}.$$
For the index, $7 ≤ i ≤ 14 \ \Rightarrow \ N_{\rm D} \ \underline{= 14}$.


(2)  For the first polynomial holds: $a_1(x = 0) = 0$. Therefore this polynomial is reducible: $a_1(x) = x \cdot (x + 1)$.

On the other hand, the following is true for the second polynomial:

$$a_2(x = 0) = 1\hspace{0.05cm},\hspace{0.2cm}a_2(x = 1) = 1 \hspace{0.05cm}.$$

This necessary but not sufficient property shows that $a_2(x)$ could be irreducible. The final proof is obtained only by two modulo 2 divisions:

  • $a_2(x)$ divided by $x$ yields $x + 1$, remainder $r(x) = 1$,
  • $a_2(x)$ divided by $x + 1$ yields $x$, remainder $r(x) = 1$.


The correct solution is therefore solution suggestion 2.


(3)  The first three polynomials are reducible, as the following calculation results show:

$$a_3(x = 0) = 0\hspace{0.05cm},\hspace{0.2cm}a_4(x = 1) = 0\hspace{0.05cm},\hspace{0.2cm}a_5(x = 0) = 0\hspace{0.05cm},\hspace{0.2cm}a_5(x = 1) = 0 \hspace{0.05cm}.$$

This could have been found out by thinking:

$$a_3(x) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x \cdot x \cdot x \hspace{0.05cm},$$
$$a_4(x) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (x^2 + x + 1)\cdot(x + 1) \hspace{0.05cm},$$
$$a_5(x) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x \cdot (x + 1)\cdot(x + 1) \hspace{0.05cm}.$$

The polynomial $a_6(x)$ is not equal to $0$ for both $x = 0$ and $x = 1$. This means that

  • "nothing speaks against" $a_6(x)$ being irreducible,
  • division by the irreducible degree 1 polynomials $x$ and $x + 1$, respectively, is not possible without remainder.


However, since division by the single irreducible degree 2 polynomial also yields a remainder, it is proved that $a_6(x)$ is an irreducible polynomial:

$$(x^3 + x+1)/(x^2 + x+1) = x + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = x\hspace{0.05cm},$$

Using the same computational procedure, it can also be shown that $a_7(x)$ is also irreducible   ⇒   Solutions 4 and 5.


(4)  From $a_8(x + 1) = 0$ follows the reducibility of $a_8(x)$. For the other two polynomials, however, holds:

$$a_9(x = 0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1\hspace{0.05cm},\hspace{0.35cm}a_9(x = 1) = 1 \hspace{0.05cm},$$
$$a_{10}(x = 0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}1\hspace{0.05cm},\hspace{0.2cm}a_{10}(x = 1) = 1 \hspace{0.05cm}.$$

So both could be irreducible. The exact proof of irreducibility is more complicated:

  • It is not necessary to use all four divisor polynomials with degree $m = 2$, namely $x^2, \ x^2 + 1, \ x^2 + x + 1$, but it is sufficient to divide by the only irreducible degree 2 polynomial. One obtains with respect to the polynomial $a_9(x)$:
$$(x^4 + x^3+1)/(x^2 + x+1) = x^2 + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = x\hspace{0.05cm}.$$

Also the division by the two irreducible degree 3 polynomials yields a remainder in each case:

$$(x^4 + x^3+1)/(x^3 + x+1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = x^2\hspace{0.05cm},$$
$$(x^4 + x^3+1)/(x^3 + x^2+1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x \hspace{0.05cm},\hspace{0.95cm}{\rm Rest}\hspace{0.15cm} r(x) = x +1\hspace{0.05cm}.$$

Finally, let us consider the polynomial $a_{10}(x) = x^4 + x^2 + 1$. Here holds

$$(x^4 + x^2+1)/(x^2 + x+1) = x^2 + x+1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = 0\hspace{0.05cm}.$$

It follows: Only the polynomial $a_9(x)$ is irreducible  ⇒  Solution suggestion2.