Difference between revisions of "Aufgaben:Exercise 2.3: Reducible and Irreducible Polynomials"

From LNTwww
 
Line 83: Line 83:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  The polynomial $a(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \hspace{0.1cm}... \hspace{0.1cm} + a_m \cdot x^{m}$
+
'''(1)'''  The polynomial  $a(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \hspace{0.1cm}... \hspace{0.1cm} + a_m \cdot x^{m}$
*with $a_m = 1$  
+
*with  $a_m = 1$
*and given coefficients $a_0, \ a_1, \hspace{0.05cm}\text{ ...} \hspace{0.1cm} , \ a_{m-1}$ ($0$ or $1$ in each case).
+
 +
*and given coefficients  $a_0, \ a_1, \hspace{0.05cm}\text{ ...} \hspace{0.1cm} , \ a_{m-1}$  $(0$  or  $1$  in each case$)$
  
  
is irreducible if there is no single polynomial $q(x)$ such that the modulo $2$ division $a(x)/q(x)$ yields no remainder. The degree of all divisor polynomials $q(x)$ to be considered is at least $1$ and at most $m-1$.
+
is irreducible if there is no single polynomial  $q(x)$  such that the modulo  $2$  division  $a(x)/q(x)$  yields no remainder.  The degree of all divisor polynomials  $q(x)$  to be considered is at least  $1$  and at most  $m-1$.
* For $m = 2$ two polynomial divisions $a(x)/q_i(x)$ are necessary, namely with
+
* For  $m = 2$  two polynomial divisions  $a(x)/q_i(x)$  are necessary,  namely with
 
:$$q_1(x) = x \hspace{0.5cm}{\rm and}\hspace{0.5cm}q_2(x) = x+1
 
:$$q_1(x) = x \hspace{0.5cm}{\rm and}\hspace{0.5cm}q_2(x) = x+1
 
\hspace{0.3cm} \Rightarrow\hspace{0.3cm}N_{\rm D}\hspace{0.15cm}\underline{= 2}
 
\hspace{0.3cm} \Rightarrow\hspace{0.3cm}N_{\rm D}\hspace{0.15cm}\underline{= 2}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
* For $m = 3$ there are already $N_{\rm D} \ \underline{= 6}$ divisor polynomials, namely besides $q_1(x) = x$ and $q_2(x) = x + 1$ also
+
* For  $m = 3$  there are already  $N_{\rm D} \ \underline{= 6}$  divisor polynomials,  namely besides  $q_1(x) = x$  and  $q_2(x) = x + 1$  also
 
:$$q_3(x) = x^2\hspace{0.05cm},\hspace{0.2cm}q_4(x) = x^2+1\hspace{0.05cm},\hspace{0.2cm}
 
:$$q_3(x) = x^2\hspace{0.05cm},\hspace{0.2cm}q_4(x) = x^2+1\hspace{0.05cm},\hspace{0.2cm}
 
q_5(x) = x^2 + x\hspace{0.05cm},\hspace{0.2cm}q_6(x) = x^2+x+1\hspace{0.05cm}.$$
 
q_5(x) = x^2 + x\hspace{0.05cm},\hspace{0.2cm}q_6(x) = x^2+x+1\hspace{0.05cm}.$$
  
* For $m = 4$, besides $q_1(x), \hspace{0.05cm}\text{ ...} \hspace{0.1cm} , \ q_6(x)$ all possible divisor polynomials with degree $m = 3$ must also be considered, thus:
+
* For  $m = 4$,  besides  $q_1(x), \hspace{0.05cm}\text{ ...} \hspace{0.1cm} , \ q_6(x)$  all possible divisor polynomials with degree  $m = 3$  must also be considered,  thus:
 
:$$q_i(x) =  a_0 + a_1 \cdot x + a_2 \cdot x^2 + x^3\hspace{0.05cm},\hspace{0.5cm}a_0, a_1, a_2 \in \{0,1\}  
 
:$$q_i(x) =  a_0 + a_1 \cdot x + a_2 \cdot x^2 + x^3\hspace{0.05cm},\hspace{0.5cm}a_0, a_1, a_2 \in \{0,1\}  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Line 104: Line 105:
  
  
'''(2)'''  For the first polynomial holds: $a_1(x = 0) = 0$. Therefore this polynomial is reducible: $a_1(x) = x \cdot (x + 1)$.
+
'''(2)'''  For the first polynomial holds:  $a_1(x = 0) = 0$.  Therefore this polynomial is reducible:
 +
:$$a_1(x) = x \cdot (x + 1).$$
  
On the other hand, the following is true for the second polynomial:
+
On the other hand,  the following is true for the second polynomial:
 
:$$a_2(x = 0) = 1\hspace{0.05cm},\hspace{0.2cm}a_2(x = 1) = 1
 
:$$a_2(x = 0) = 1\hspace{0.05cm},\hspace{0.2cm}a_2(x = 1) = 1
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
This necessary but not sufficient property shows that $a_2(x)$ could be irreducible. The final proof is obtained only by two modulo 2 divisions:
+
This necessary but not sufficient property shows that  $a_2(x)$  could be irreducible.  The final proof is obtained only by two modulo-2 divisions:
* $a_2(x)$ divided by $x$ yields $x + 1$, remainder $r(x) = 1$,
+
* $a_2(x)$  divided by  $x$  yields  $x + 1$,  remainder  $r(x) = 1$,
* $a_2(x)$ divided by $x + 1$ yields $x$, remainder $r(x) = 1$.
 
  
 +
* $a_2(x)$  divided by  $x + 1$  yields  $x$,  remainder $r(x) = 1$.
  
The correct solution is therefore <u>proposed solution 2</u>.
 
  
 +
The correct solution is therefore the&nbsp; <u>proposed solution 2</u>.
  
'''(3)'''&nbsp; The first three polynomials are reducible, as the following calculation results show:
+
 
 +
'''(3)'''&nbsp; The first three polynomials are reducible,&nbsp; as the following calculation results show:
 
:$$a_3(x = 0) = 0\hspace{0.05cm},\hspace{0.2cm}a_4(x = 1) = 0\hspace{0.05cm},\hspace{0.2cm}a_5(x = 0) = 0\hspace{0.05cm},\hspace{0.2cm}a_5(x = 1) = 0
 
:$$a_3(x = 0) = 0\hspace{0.05cm},\hspace{0.2cm}a_4(x = 1) = 0\hspace{0.05cm},\hspace{0.2cm}a_5(x = 0) = 0\hspace{0.05cm},\hspace{0.2cm}a_5(x = 1) = 0
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Line 127: Line 130:
 
:$$a_5(x)  \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x \cdot (x + 1)\cdot(x + 1) \hspace{0.05cm}.$$
 
:$$a_5(x)  \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x \cdot (x + 1)\cdot(x + 1) \hspace{0.05cm}.$$
  
The polynomial $a_6(x)$ is not equal to $0$ for both $x = 0$ and $x = 1$. This means that  
+
The polynomial&nbsp; $a_6(x)$&nbsp; is not equal to&nbsp; $0$&nbsp; for both&nbsp; $x = 0$&nbsp; and&nbsp; $x = 1$&nbsp;. This means that  
* "nothing speaks against" $a_6(x)$ being irreducible,
+
* "nothing speaks against"&nbsp; $a_6(x)$&nbsp; being irreducible,
* division by the irreducible degree 1 polynomials $x$ and $x + 1$, respectively, is not possible without remainder.
+
* division by the irreducible degree-1 polynomials&nbsp; $x$&nbsp; and&nbsp; $x + 1$,&nbsp; respectively,&nbsp; is not possible without remainder.
  
  
However, since division by the single irreducible degree 2 polynomial also yields a remainder, it is proved that $a_6(x)$ is an irreducible polynomial:  
+
However,&nbsp; since division by the single irreducible degree-2 polynomial also yields a remainder,&nbsp; it is proved that&nbsp; $a_6(x)$&nbsp; is an irreducible polynomial:  
 
:$$(x^3 + x+1)/(x^2 + x+1) = x + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = x\hspace{0.05cm},$$
 
:$$(x^3 + x+1)/(x^2 + x+1) = x + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = x\hspace{0.05cm},$$
  
Using the same computational procedure, it can also be shown that $a_7(x)$ is also irreducible &nbsp; &#8658; &nbsp; <u>Solutions 4 and 5</u>.
+
Using the same computational procedure,&nbsp; it can also be shown that&nbsp; $a_7(x)$&nbsp; is also irreducible &nbsp; &#8658; &nbsp; <u>Solutions 4 and 5</u>.
  
  
'''(4)'''&nbsp; From $a_8(x + 1) = 0$ follows the reducibility of $a_8(x)$. For the other two polynomials, however, holds:
+
'''(4)'''&nbsp; From&nbsp; $a_8(x + 1) = 0$&nbsp; follows the reducibility of&nbsp; $a_8(x)$.&nbsp; For the other two polynomials,&nbsp; however,&nbsp; holds:
 
:$$a_9(x = 0)  \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1\hspace{0.05cm},\hspace{0.35cm}a_9(x = 1) = 1  \hspace{0.05cm},$$
 
:$$a_9(x = 0)  \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1\hspace{0.05cm},\hspace{0.35cm}a_9(x = 1) = 1  \hspace{0.05cm},$$
 
:$$a_{10}(x = 0)  \hspace{-0.15cm} \ = \ \hspace{-0.15cm}1\hspace{0.05cm},\hspace{0.2cm}a_{10}(x = 1) = 1  \hspace{0.05cm}.$$
 
:$$a_{10}(x = 0)  \hspace{-0.15cm} \ = \ \hspace{-0.15cm}1\hspace{0.05cm},\hspace{0.2cm}a_{10}(x = 1) = 1  \hspace{0.05cm}.$$
  
So both could be irreducible. The exact proof of irreducibility is more complicated:  
+
So both could be irreducible.&nbsp; The exact proof of irreducibility is more complicated:  
*It is not necessary to use all four divisor polynomials with degree $m = 2$, namely $x^2, \ x^2 + 1, \ x^2 + x + 1$, but it is sufficient to divide by the only irreducible degree 2 polynomial. One obtains with respect to the polynomial $a_9(x)$:
+
*It is not necessary to use all four divisor polynomials with degree&nbsp; $m = 2$,&nbsp; namely $x^2, \ x^2 + 1, \ x^2 + x + 1$,&nbsp; but it is sufficient to divide by the only irreducible degree-2 polynomial.&nbsp; One obtains with respect to the polynomial&nbsp; $a_9(x)$:
:$$(x^4 + x^3+1)/(x^2 + x+1) = x^2 + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = x\hspace{0.05cm}.$$
+
:$$(x^4 + x^3+1)/(x^2 + x+1) = x^2 + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm remainder}\hspace{0.15cm} r(x) = x\hspace{0.05cm}.$$
  
Also the division by the two irreducible degree 3 polynomials yields a remainder in each case:
+
Also the division by the two irreducible degree-3 polynomials yields a remainder in each case:
:$$(x^4 + x^3+1)/(x^3 + x+1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = x^2\hspace{0.05cm},$$
+
:$$(x^4 + x^3+1)/(x^3 + x+1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm remainder}\hspace{0.15cm} r(x) = x^2\hspace{0.05cm},$$
:$$(x^4 + x^3+1)/(x^3 + x^2+1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x  \hspace{0.05cm},\hspace{0.95cm}{\rm Rest}\hspace{0.15cm} r(x) = x +1\hspace{0.05cm}.$$
+
:$$(x^4 + x^3+1)/(x^3 + x^2+1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x  \hspace{0.05cm},\hspace{0.95cm}{\rm remainder}\hspace{0.15cm} r(x) = x +1\hspace{0.05cm}.$$
  
Finally, let us consider the polynomial $a_{10}(x) = x^4 + x^2 + 1$. Here holds
+
Finally,&nbsp; let us consider the polynomial&nbsp; $a_{10}(x) = x^4 + x^2 + 1$.&nbsp; Here holds
:$$(x^4 + x^2+1)/(x^2 + x+1) = x^2 + x+1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = 0\hspace{0.05cm}.$$
+
:$$(x^4 + x^2+1)/(x^2 + x+1) = x^2 + x+1 \hspace{0.05cm},\hspace{0.4cm}{\rm remainder}\hspace{0.15cm} r(x) = 0\hspace{0.05cm}.$$
  
It follows: Only the polynomial $a_9(x)$ is irreducible &nbsp;&#8658;&nbsp; <u>proposed solution 2</u>.
+
It follows:&nbsp; Only the polynomial&nbsp; $a_9(x)$&nbsp; is irreducible &nbsp; &#8658; &nbsp; <u>proposed solution 2</u>.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 17:14, 29 September 2022

Polynomials of degree  $m = 2$,  $m = 3$,  $m = 4$

Important prerequisites for understanding channel coding are knowledge of polynomial properties.

In this exercise we consider polynomials of the form

$$a(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \hspace{0.1cm}... \hspace{0.1cm} + a_m \cdot x^{m} \hspace{0.05cm},$$
  • where for the coefficients  $a_i ∈ {\rm GF}(2) = \{0, \, 1\}$  holds  $(0 ≤ i ≤ m)$
  • and the highest coefficient is always assumed to  $a_m = 1$. 


One refers to  $m$  as the  "degree"  of the polynomial.

Adjacent ten polynomials are given where the polynomial degree is either 

  • $m = 2$  (red font), 
  • $m = 3$  (blue font)  or 
  • $m = 4$  (green font).


A polynomial  $a(x)$  is called  reducible  if it can be represented as the product of two polynomials  $p(x)$  and  $q(x)$  of lower degree:

$$a(x) = p(x) \cdot q(x)$$

If this splitting is not possible,  that is,  if for the polynomial

$$a(x) = p(x) \cdot q(x) + r(x)$$

with a residual polynomial  $r(x) ≠ 0$  holds,  then the polynomial is called  irreducible.  Such irreducible polynomials are of special importance for the description of error correction methods.

⇒   The proof that a polynomial  $a(x)$  of degree  $m$  is irreducible requires several polynomial divisions  $a(x)/q(x)$,  where the degree of the respective divisor polynomial  $q(x)$  is always smaller than  $m$.   Only if all these divisions  $($modulo $2)$  always yield a remainder  $r(x) ≠ 0$  it is proved that  $a(x)$  is indeed an irreducible polynomial.

⇒   This exact proof is very complex.  Necessary conditions for  $a(x)$  to be an irreducible polynomial at all are the two conditions  $($in nonbinary approach  "$x=1$"  would have to be replaced by  "$x≠0$"$)$:

  • $a(x = 0) = 1$,
  • $a(x = 1) = 1$.


Otherwise,  one could write for the polynomial under investigation:

$$a(x) = q(x) \cdot x \hspace{0.5cm}{\rm resp.}\hspace{0.5cm}a(x) = q(x) \cdot (x+1)\hspace{0.05cm}.$$

The above conditions are necessary,  but not sufficient,  as the following example shows:

$$a(x) = x^5 + x^4 +1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}a(x = 0) = 1\hspace{0.05cm},\hspace{0.2cm}a(x = 1) = 1 \hspace{0.05cm}.$$

Nevertheless,  this polynomial is reducible:

$$a(x) = (x^3 + x +1)(x^2 + x +1) \hspace{0.05cm}.$$


Hint:  This exercise belongs to the chapter  "Extension field".


Questions

1

How many polynomial divisions  $(N_{\rm D})$  are required to prove exactly that a  ${\rm GF}(2)$ polynomial  $a(x)$  of degree  $m$  is irreducible?

$m = 2 \text{:} \hspace{0.35cm} N_{\rm D} \ = \ $

$m = 3 \text{:} \hspace{0.35cm} N_{\rm D} \ = \ $

$m = 4 \text{:} \hspace{0.35cm} N_{\rm D} \ = \ $

2

Which of the degree–2 polynomials are irreducible?

$a_1(x) = x^2 + x$,
$a_2(x) = x^2 + x + 1$.

3

Which of the degree–3 polynomials are irreducible?

$a_3(x) = x^3$,
$a_4(x) = x^3 + 1$,
$a_5(x) = x^3 + x$,
$a_6(x) = x^3 + x + 1$,
$a_7(x) = x^3 + x^2 + 1$.

4

Which of the degree–4 polynomials are irreducible?

$a_8(x) = x^4 + 1$,
$a_9(x) = x^4 + x^3 + 1$,
$a_{10}(x) = x^4 + x^2 + 1$.


Solution

(1)  The polynomial  $a(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \hspace{0.1cm}... \hspace{0.1cm} + a_m \cdot x^{m}$

  • with  $a_m = 1$
  • and given coefficients  $a_0, \ a_1, \hspace{0.05cm}\text{ ...} \hspace{0.1cm} , \ a_{m-1}$  $(0$  or  $1$  in each case$)$


is irreducible if there is no single polynomial  $q(x)$  such that the modulo  $2$  division  $a(x)/q(x)$  yields no remainder.  The degree of all divisor polynomials  $q(x)$  to be considered is at least  $1$  and at most  $m-1$.

  • For  $m = 2$  two polynomial divisions  $a(x)/q_i(x)$  are necessary,  namely with
$$q_1(x) = x \hspace{0.5cm}{\rm and}\hspace{0.5cm}q_2(x) = x+1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}N_{\rm D}\hspace{0.15cm}\underline{= 2} \hspace{0.05cm}.$$
  • For  $m = 3$  there are already  $N_{\rm D} \ \underline{= 6}$  divisor polynomials,  namely besides  $q_1(x) = x$  and  $q_2(x) = x + 1$  also
$$q_3(x) = x^2\hspace{0.05cm},\hspace{0.2cm}q_4(x) = x^2+1\hspace{0.05cm},\hspace{0.2cm} q_5(x) = x^2 + x\hspace{0.05cm},\hspace{0.2cm}q_6(x) = x^2+x+1\hspace{0.05cm}.$$
  • For  $m = 4$,  besides  $q_1(x), \hspace{0.05cm}\text{ ...} \hspace{0.1cm} , \ q_6(x)$  all possible divisor polynomials with degree  $m = 3$  must also be considered,  thus:
$$q_i(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + x^3\hspace{0.05cm},\hspace{0.5cm}a_0, a_1, a_2 \in \{0,1\} \hspace{0.05cm}.$$
For the index, $7 ≤ i ≤ 14 \ \Rightarrow \ N_{\rm D} \ \underline{= 14}$.


(2)  For the first polynomial holds:  $a_1(x = 0) = 0$.  Therefore this polynomial is reducible:

$$a_1(x) = x \cdot (x + 1).$$

On the other hand,  the following is true for the second polynomial:

$$a_2(x = 0) = 1\hspace{0.05cm},\hspace{0.2cm}a_2(x = 1) = 1 \hspace{0.05cm}.$$

This necessary but not sufficient property shows that  $a_2(x)$  could be irreducible.  The final proof is obtained only by two modulo-2 divisions:

  • $a_2(x)$  divided by  $x$  yields  $x + 1$,  remainder  $r(x) = 1$,
  • $a_2(x)$  divided by  $x + 1$  yields  $x$,  remainder $r(x) = 1$.


The correct solution is therefore the  proposed solution 2.


(3)  The first three polynomials are reducible,  as the following calculation results show:

$$a_3(x = 0) = 0\hspace{0.05cm},\hspace{0.2cm}a_4(x = 1) = 0\hspace{0.05cm},\hspace{0.2cm}a_5(x = 0) = 0\hspace{0.05cm},\hspace{0.2cm}a_5(x = 1) = 0 \hspace{0.05cm}.$$

This could have been found out by thinking:

$$a_3(x) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x \cdot x \cdot x \hspace{0.05cm},$$
$$a_4(x) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (x^2 + x + 1)\cdot(x + 1) \hspace{0.05cm},$$
$$a_5(x) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x \cdot (x + 1)\cdot(x + 1) \hspace{0.05cm}.$$

The polynomial  $a_6(x)$  is not equal to  $0$  for both  $x = 0$  and  $x = 1$ . This means that

  • "nothing speaks against"  $a_6(x)$  being irreducible,
  • division by the irreducible degree-1 polynomials  $x$  and  $x + 1$,  respectively,  is not possible without remainder.


However,  since division by the single irreducible degree-2 polynomial also yields a remainder,  it is proved that  $a_6(x)$  is an irreducible polynomial:

$$(x^3 + x+1)/(x^2 + x+1) = x + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = x\hspace{0.05cm},$$

Using the same computational procedure,  it can also be shown that  $a_7(x)$  is also irreducible   ⇒   Solutions 4 and 5.


(4)  From  $a_8(x + 1) = 0$  follows the reducibility of  $a_8(x)$.  For the other two polynomials,  however,  holds:

$$a_9(x = 0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1\hspace{0.05cm},\hspace{0.35cm}a_9(x = 1) = 1 \hspace{0.05cm},$$
$$a_{10}(x = 0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}1\hspace{0.05cm},\hspace{0.2cm}a_{10}(x = 1) = 1 \hspace{0.05cm}.$$

So both could be irreducible.  The exact proof of irreducibility is more complicated:

  • It is not necessary to use all four divisor polynomials with degree  $m = 2$,  namely $x^2, \ x^2 + 1, \ x^2 + x + 1$,  but it is sufficient to divide by the only irreducible degree-2 polynomial.  One obtains with respect to the polynomial  $a_9(x)$:
$$(x^4 + x^3+1)/(x^2 + x+1) = x^2 + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm remainder}\hspace{0.15cm} r(x) = x\hspace{0.05cm}.$$

Also the division by the two irreducible degree-3 polynomials yields a remainder in each case:

$$(x^4 + x^3+1)/(x^3 + x+1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm remainder}\hspace{0.15cm} r(x) = x^2\hspace{0.05cm},$$
$$(x^4 + x^3+1)/(x^3 + x^2+1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x \hspace{0.05cm},\hspace{0.95cm}{\rm remainder}\hspace{0.15cm} r(x) = x +1\hspace{0.05cm}.$$

Finally,  let us consider the polynomial  $a_{10}(x) = x^4 + x^2 + 1$.  Here holds

$$(x^4 + x^2+1)/(x^2 + x+1) = x^2 + x+1 \hspace{0.05cm},\hspace{0.4cm}{\rm remainder}\hspace{0.15cm} r(x) = 0\hspace{0.05cm}.$$

It follows:  Only the polynomial  $a_9(x)$  is irreducible   ⇒   proposed solution 2.