Difference between revisions of "Aufgaben:Exercise 2.3: Yet Another Multi-Path Channel"

From LNTwww
Line 3: Line 3:
  
 
[[File:P_ID2160__Mob_A_2_3.png|right|frame|Vorgegebene Rechteckantwort]]
 
[[File:P_ID2160__Mob_A_2_3.png|right|frame|Vorgegebene Rechteckantwort]]
Wir betrachten einen Mehrwegekanal, der durch folgende Impulsantwort charakterisiert wird:
+
We consider a multipath channel, which is characterized by the following impulse response:
:$$h(\tau, \hspace{0.05cm} t) = h(\tau) = \sum_{m = 1}^{M} k_m \cdot \delta( \tau - \tau_m)  
+
$$h(\tau, \hspace{0.05cm} t) = h(\tau) = \sum_{m = 1}^{M} k_m \cdot \delta( \tau - \tau_m)  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Alle Koeffizienten  $k_{m}$  seien reell (positiv oder negativ). Weiterhin ist anzumerken:
+
All coefficients  $k_{m}$  be real (positive or negative). Furthermore, it should be noted
* Aus der Angabe  $h(\tau, \hspace{0.05cm}t) = h(\tau)$  erkennt man, dass der Kanal zeitinvariant ist.
+
* From the specification  $h(\tau, \hspace{0.05cm}t) = h(\tau)$  you can see that the channel is time invariant.
* Allgemein weist der Kanal  $M$  Pfade auf. Der  $M$–Wert soll aus der Grafik bestimmt werden.
+
* Generally, the channel  $M$  has paths. The  $M$–value should be determined from the graphic.
* Für die Verzögerungszeiten gelten folgende Relationen:&nbsp; $\tau_1 < \tau_2 < \tau_3 < \ \text{...}$
+
* The following relations apply to the delay times:&nbsp; $\tau_1 < \tau_2 < \tau_3 < \ \ text{...}$
  
  
Die Grafik zeigt das Ausgangssignal&nbsp; $r(\tau)$&nbsp; des Kanals, wenn am Eingang folgendes Sendesignal anliegt (dargestellt im äquivalenten Tiefpassbereich):
+
The diagram shows the output signal&nbsp; $r(\tau)$&nbsp; of the channel when the following transmit signal is present at the input (shown in the equivalent low-pass range):
:$$s(\tau) = \left\{ \begin{array}{c} s_0\\
+
$$s(\tau) = \left\{ \begin{array}{c} s_0\\\
  0   \end{array} \right.\quad
+
  0 \end{array} \right.\quad
\begin{array}{*{1}c} 0 \le \tau < 5\,{\rm &micro; s},
+
\begin{\array}{*{*1}c} 0 \le \tau < 5\, {\rm &micro; s}
\\ {\rm sonst}. \\ \end{array}$$
+
\\ {\arm else}. \\ \end{array}$$
  
Gesucht wird die dazugehörige Impulsantwort&nbsp; $h(\tau)$&nbsp; sowie die Übertragungsfunktion&nbsp; $H(f)$.
+
The corresponding impulse response&nbsp; $h(\tau)$&nbsp; as well as the transfer function&nbsp; $H(f)$ is searched for.
  
  
Line 26: Line 26:
  
  
''Hinweise:''
+
''Notes:''
* Die Aufgabe bezieht sich auf das Kapitel&nbsp; [[Mobile_Kommunikation/Mehrwegeempfang_beim_Mobilfunk| Mehrwegeempfang beim Mobilfunk]].
+
* This task refers to the chapter&nbsp; [[Mobile_Kommunikation/Mehrwegeempfang_beim_Mobilfunk| Mehrwegeempfang beim Mobilfunk]].
* Gehen Sie bei der Lösung der Teilaufgabe '''(1)''' davon aus, dass sich die Impulsantwort&nbsp; $h(\tau)$&nbsp; über 5 Mikrosekunden erstreckt.
+
* For the solution of the subtask '''(1)'' assume that the impulse response&nbsp; $h(\tau)$&nbsp; extends over 5 microseconds.
 
   
 
   
  
  
  
===Fragebogen===
+
===Questionnaire===
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lautet die Impulsantwort&nbsp; $h(\tau)$? Wie viele Pfade&nbsp; $(M)$&nbsp; gibt es hier?
+
{What is the impulse response&nbsp; $h(\tau)$? How many paths&nbsp; $(M)$&nbsp; are there here?
 
|type="{}"}
 
|type="{}"}
 
$M \ = \ ${ 3 }
 
$M \ = \ ${ 3 }
  
{Geben Sie die drei ersten Verzögerungszeiten&nbsp; $\tau_m$&nbsp; an.
+
Specify the first three delay times&nbsp; $\tau_m$&nbsp;.
 
|type="{}"}
 
|type="{}"}
$\tau_1 \ = \ ${ 0. } $\ \rm &micro; s$
+
$\ dew_1 \ = \ ${ 0. } $\ \ \rm &micro; s$
$\tau_2 \ = \ ${ 2 3% } $\ \rm &micro; s$
+
$\tau_2 \ = \ ${ 2 3% } $\ \ \rm &micro; s$
$\tau_3 \ = \ ${ 10 3% } $\ \rm &micro; s$
+
$\tau_3 \ = \ ${ 10 3% } $\ \ \rm &micro; s$
  
{Wie lauten die Gewichte der drei ersten Diracimpulse?
+
{What are the weights of the first three Diraculsions?
 
|type="{}"}
 
|type="{}"}
 
$k_1 \ = \ ${ 0.75 3% }  
 
$k_1 \ = \ ${ 0.75 3% }  
Line 51: Line 51:
 
$k_3 \ = \ ${ 0.25 3% }  
 
$k_3 \ = \ ${ 0.25 3% }  
  
{Berechnen Sie den Frequenzgang&nbsp; $H(f)$. Wie groß ist die Frequenzperiode&nbsp; $f_0$? <br><i>Hinweis:</i> &nbsp; Bei ganzzahligem&nbsp; $i$&nbsp; muss&nbsp; $H(f + i \cdot f_0) = H(f)$&nbsp; gelten.
+
{Calculate the frequency response&nbsp; $H(f)$ What is the frequency period&nbsp; $f_0$? <br><i>Note:</i> &nbsp; With integer&nbsp; $i$&nbsp; must&nbsp; $H(f + i \cdot f_0) = H(f)$&nbsp; apply.
 
|type="{}"}
 
|type="{}"}
$f_0 \ = \ ${ 500 3% } $\ \rm kHz$
+
$f_0 \ = \ ${ 500 3% } $\ \ \rm kHz$
  
{Berechnen Sie den Betragsfrequenzgang. Welche Werte ergeben sich für die Frequenzen&nbsp; $f = 0$,&nbsp; $f = 250 \ \rm kHz$&nbsp; und&nbsp; $f = 500 \ \rm kHz$?
+
{Calculate the magnitude frequency response Which values result for the frequencies&nbsp; $f = 0$,&nbsp; $f = 250 \ \rm kHz$&nbsp; and&nbsp; $f = 500 \ \rm kHz$?
 
|type="{}"}
 
|type="{}"}
 
$|H(f = 0)| \ = \ ${ 0.5 3% }  
 
$|H(f = 0)| \ = \ ${ 0.5 3% }  
Line 61: Line 61:
 
$|H(f = 500 \ \rm kHz)| \ = \ ${ 0.5 3% }  
 
$|H(f = 500 \ \rm kHz)| \ = \ ${ 0.5 3% }  
  
{Was ist der ungünstigste Wert&nbsp; $({\rm worst \ case})$&nbsp; für&nbsp; $k_3$&nbsp; bezüglich der Frequenz&nbsp; $f = 250 \ \rm kHz$?
+
{What is the worst value&nbsp; $({\rm worst \ case})$&nbsp; for&nbsp; $k_3$&nbsp; regarding the frequency&nbsp; $f = 250 \ \rm kHz$?
 
|type="{}"}
 
|type="{}"}
 
$k_3 \ = \ ${ 1.25 3% }
 
$k_3 \ = \ ${ 1.25 3% }
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Sample solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Es gilt hier $r(\tau) = s(\tau) &#8727; h(\tau)$, wobei $s(\tau)$ ein Rechteckimpuls der Dauer $T = 5 \ \rm &micro; s$ bezeichnet und die Impulsantwort $h(\tau)$ sich allgemein aus $M$ gewichteten Diracfunktionen bei $\tau_1, \tau_2, \ \text{...} \ , \tau_M$ zusammensetzt.
+
'''(1)'''&nbsp; Here $r(\tau) = s(\tau) &#8727; h(\tau)$ is valid, where $s(\tau)$ denotes a rectangular pulse of duration $T = 5 \ \ \rm &micro; s$ and the impulse response $h(\tau)$ is generally made up of $M$ weighted Dirac functions at $\tau_1, \tau_2, \ \ \ \ text{...} \ , \tau_M$  
  
Das skizzierte Ausgangssignal $r(\tau)$ kann sich nur ergeben, falls
+
The sketched output signal $r(\tau)$ can only result if
* $\tau_1 = 0$ ist (sonst würde $r(\tau)$ nicht bei $\tau = 0$ beginnen),
+
* $\tau_1 = 0$ (otherwise $r(\tau)$ would not start at $\tau = 0$),
* $\tau_M = 10 \ \rm &micro; s$ ist (daraus ergibt sich der Rechteckverlauf zwischen $10 \ \rm &micro; s$ und $15 \ \rm &micro; s$),
+
* $\tau_M = 10 \ \ \rm &micro; s$ is (this results in the rectangular course between $10 \ \ \rm &micro; s$ and $15 \ \ \rm &micro; s$),
* dazwischen noch eine Diracfunktion bei $\tau_2 = 2 \ \rm &micro; s$ auftritt.
+
* in between another Dirac function at $\tau_2 = 2 \ \ \rm &micro; s$ occurs.
  
  
Das heißt: &nbsp; Die Impulsantwort setzt sich hier aus $\underline {M = 3}$ Diracfunktionen zusammen.
+
That means: &nbsp; The impulse response here consists of $\underline {M = 3}$ Dirac functions.
  
  
'''(2)'''&nbsp; Wie bereits bei der ersten Teilaufgabe berechnet, erhält man
+
'''(2)'''&nbsp; As already calculated in the first subtask, one gets
 
:$$\tau_1 \hspace{0.1cm} \underline {= 0}\hspace{0.05cm},\hspace{0.2cm}\tau_2 \hspace{0.1cm} \underline {= 2\,{\rm &micro; s}}\hspace{0.05cm},\hspace{0.2cm}\tau_3 \hspace{0.1cm} \underline {= 10\,{\rm &micro; s}}\hspace{0.05cm}.$$
 
:$$\tau_1 \hspace{0.1cm} \underline {= 0}\hspace{0.05cm},\hspace{0.2cm}\tau_2 \hspace{0.1cm} \underline {= 2\,{\rm &micro; s}}\hspace{0.05cm},\hspace{0.2cm}\tau_3 \hspace{0.1cm} \underline {= 10\,{\rm &micro; s}}\hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Vergleicht man Eingang $s(\tau)$ und Ausgang $r(\tau)$, so gelangt man zu folgenden Ergebnissen:
+
'''(3)'''&nbsp; If you compare input $s(\tau)$ and output $r(\tau)$, you will get the following results:
* Intervall $0 < \tau < 2 \ {\rm &micro; s} \text{:} \, s(\tau) = s_0, \hspace{1cm} r(\tau) = 0.75 \cdot s_0 \,\,\Rightarrow\,\, k_1 \ \underline {= 0.75}$,
+
* Interval $0 < \tau < 2 \ {\rm &micro; s} \text \ \, s(\tau) = s_0, \hspace{1cm} r(\tau) = 0.75 \cdot s_0 \,\,\Rightarrow\,\, k_1 \ \underline {= 0.75}$,
* Intervall $2 \ {\rm &micro; s} < \tau < 5 \ {\rm &micro; s} \text{:} \, \hspace{2.4cm} r(\tau) =(k_1 + k_2) \cdot s_0 = 0.25 \cdot s_0 \Rightarrow k_2 \ \underline {= \, &ndash;0.50}$,
+
* Interval $2 \ {\rm &micro; s} < \tau < 5 \ {\rm &micro; s} \text \ \, \hspace{2.4cm} r(\tau) =(k_1 + k_2) \cdot s_0 = 0.25 \cdot s_0 \Rightarrow k_2 \ \underline {= \, &ndash;0.50}$,
* Intervall $10 \ {\rm &micro; s} < \tau < 15 \ {\rm &micro; s} \text{:} \, \hspace{1.95cm} r(\tau) =k_3 \cdot s_0 = 0.25 \cdot s_0 \,\Rightarrow\, k_3 \ \underline {= 0.25}$.
+
* interval $10 \ {\rm &micro; s} < \tau < 15 \ {\rm &micro; s} \text \ \,\hspace{\a6}{\a6} r(\tau} =k_3 \cdot s_0 = 0.25 \cdot s_0 \,\Rightarrow\, k_3 \ \underline {= 0.25}$.
  
 
+
'''(4)'''&nbsp; With the displacement theorem one obtains for the Fourier transform of the impulse response $h(\tau)$:
 
+
$$h(\tau) = k_1 \cdot \delta( \tau) + k_2 \cdot \delta( \tau - \tau_2)+ k_3 \cdot \delta( \tau - \tau_3) \hspace{0.3cm}
'''(4)'''&nbsp; Mit dem Verschiebungssatz erhält man für die Fouriertransformatierte der Impulsantwort $h(\tau)$:
+
\Rightarrow \hspace{0.3cm}H(f) = k_1 + k_2 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_2}+ k_3 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_3}
:$$h(\tau) = k_1 \cdot \delta( \tau) + k_2 \cdot \delta( \tau - \tau_2)+ k_3 \cdot \delta( \tau - \tau_3) \hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}H(f) = k_1 + k_2 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_2}+ k_3 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_3}
 
 
  \hspace{0.05cm}. $$
 
  \hspace{0.05cm}. $$
  
Durch Analyse der einzelnen Beiträge kommt man zu folgendem Ergebnis:
+
Analysis of the individual contributions leads to the following conclusion:
* Der erste Anteil ist konstant &nbsp;&#8658;&nbsp; Periode $f_1 &#8594; &#8734;$.
+
* The first share is constant &nbsp;&#8658;&nbsp; period $f_1 &#8594; &#8734;$.
* Der zweite Anteil ist periodisch mit $f_2 = 1/\tau_2 = 500 \ \rm kHz$.
+
* The second share is periodic with $f_2 = 1/\tau_2 = 500 \ \rm kHz$.
* Der dritte Anteil ist periodisch mit $f_3 = 1/\tau_3 = 100 \ \rm kHz$.
+
* The third portion is periodic with $f_3 = 1/\thaw_3 = 100 \ \rm kHz$.
  
  
&#8658; &nbsp; Insgesamt ist damit $H(f)$ periodisch mit $f_0 \ \underline {= 500 \ \rm kHz}$.
+
&#8658; &nbsp; In total, $H(f)$ is thus periodic with $f_0 \ \underline {= 500 \ \ \rm kHz}$.
  
  
'''(5)'''&nbsp; Mit $A = 2\pi f \cdot \tau_2$ und $B = 2\pi f \cdot \tau_3$ erhält man:
+
'''(5)'''&nbsp; With $A = 2\pi f \cdot \tau_2$ and $B = 2\pi f \cdot \tau_3$ you get
 
:$$|H(f)|^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} H(f) \cdot H^{\star}(f)=
 
:$$|H(f)|^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} H(f) \cdot H^{\star}(f)=
 
  \left [ \frac {3}{4} - \frac {1}{2} \cdot {\rm e}^{-{\rm j}A} + \frac {1}{4} \cdot {\rm e}^{-{\rm j}B}\right ]  
 
  \left [ \frac {3}{4} - \frac {1}{2} \cdot {\rm e}^{-{\rm j}A} + \frac {1}{4} \cdot {\rm e}^{-{\rm j}B}\right ]  
  \left [ \frac {3}{4} - \frac {1}{2} \cdot {\rm e}^{{\rm j}A} + \frac {1}{4} \cdot {\rm e}^{{\rm j}B}\right ]$$
+
  \left [ \frac {3}{4} - \frac {1}{2} \cdot {\rm e}^{{{\rm j}A} + \frac {1}{4} \cdot {\rm e}^{{\rm j}B}\right ]$
:$$\Rightarrow \hspace{0.3cm} |H(f)|^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {9}{16 }- \frac {3 {\rm e}^{{\rm j}A}}{8} +\frac {3{\rm e}^{{\rm j}B}}{16}  
+
$$\Rightarrow \hspace{0.3cm} |H(f)|^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {9}{16}- \frac {3 {\rm e}^{{\rm j}A}}{8} +\frac {3{\rm e}^{{\rm j}B}}{16}  
   - \frac {3{\rm e}^{-{\rm j}A}}{8} +\frac {1}{4}- \frac {{\rm e}^{{\rm j}(B-A)}}{8} +\frac {3{\rm e}^{-{\rm j}B}}{16}   
+
   - \frac {3{\rm e}^{-{\rm j}A}}{8} +\frac {1}{4}- \frac {{\rm e}^{{\rm j}(B-A)}}{8} +\frac {3{\rm e}^{-{\rm j}B}{16}   
   - \frac {{\rm e}^{{\rm j}(A-B)}}{8} +\frac{1}{16 }=$$
+
   - \frac {{{\rm e}^{{{\rm j}(A-B)}}{8} +\frac{1}{16 }=$$
:$$\hspace{2.1cm} \ = \ \hspace{-0.1cm}\frac {7}{8 }- \frac {3}{8} \cdot \left [ {\rm e}^{{\rm j}A} + {\rm e}^{-{\rm j}A}\right ]+
+
:$$\hspace{2.1cm} \ = \ \hspace{-0.1cm}\frac {7}{8}- \frac {3}{8} \cdot \left [ {\rm e}^{{\rm j}A} + {\rm e}^{-{\rm j}A}\right ]
\frac {3}{16} \cdot \left [ {\rm e}^{{\rm j}B} + {\rm e}^{-{\rm j}B}\right ]- \frac {1}{8} \cdot \left [ {\rm e}^{{\rm j}(B-A)} + {\rm e}^{-{\rm j}(B-A)}\right ]\hspace{0.05cm}.$$
+
\frac {3}{16} \cdot \left [ {\rm e}^{{\rm j}B} + {\rm e}^{-{\rm j}B}\right ]- \frac {1}{8} \cdot \left [ {\rm e}^{{{\rm j}(B-A)} + {\rm e}^{-{\rm j}(B-A)}\right ]\hspace{0.05cm}.$
  
Daraus ergibt sich mit dem [[Signaldarstellung/Zum_Rechnen_mit_komplexen_Zahlen#Darstellung_nach_Betrag_und_Phase|Satz von Euler]] unter Berücksichtigung der Frequenzperiodizität:
+
This results in the [[Signal representation/For_calculation_with_complex_numbers#Depiction_by_amount_and_phase|set by Euler]] with consideration of the frequency periodicity:
 
:$$|H(f)|= \sqrt{\frac {7}{8 }- \frac {3}{4} \cdot \cos( 2 \pi f \tau_2) +
 
:$$|H(f)|= \sqrt{\frac {7}{8 }- \frac {3}{4} \cdot \cos( 2 \pi f \tau_2) +
 
\frac {3}{8} \cdot \cos( 2 \pi f \tau_3)- \frac {1}{4} \cdot \cos( 2 \pi f (\tau_3 - \tau_2))}$$
 
\frac {3}{8} \cdot \cos( 2 \pi f \tau_3)- \frac {1}{4} \cdot \cos( 2 \pi f (\tau_3 - \tau_2))}$$
:$$\Rightarrow \hspace{0.3cm} |H(f = 0)|\hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{\frac {7}{8 }- \frac {3}{4} +
+
$$\Rightarrow \hspace{0.3cm} |H(f = 0)|\hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{\frac {7}{8}- \frac {3}{4} +
 
\frac {3}{8} - \frac {1}{4} } = \sqrt{0.25}\hspace{0.1cm} \underline {= 0.5} = |H(f = 500\,{\rm kHz})|$$
 
\frac {3}{8} - \frac {1}{4} } = \sqrt{0.25}\hspace{0.1cm} \underline {= 0.5} = |H(f = 500\,{\rm kHz})|$$
:$$|H(f = 250\,{\rm kHz})|\hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{\frac {7}{8 }- \frac {3}{4} \cdot \cos( \pi ) +
+
:$$|H(f = 250\,{\rm kHz})|\hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{\frac }{7}{8}- \frac {3}{4} \cdot \cos( \pi ) +
 
\frac {3}{8} \cdot \cos( 5 \pi )- \frac {1}{4} \cdot \cos( 4 \pi )} \hspace{0.1cm} \underline {= 1}\hspace{0.05cm}.$$
 
\frac {3}{8} \cdot \cos( 5 \pi )- \frac {1}{4} \cdot \cos( 4 \pi )} \hspace{0.1cm} \underline {= 1}\hspace{0.05cm}.$$
  
  
'''(6)'''&nbsp; Der soeben berechnete Frequenzgang kann für die Frequenz $f = 250 \ \rm kHz$ wie folgt dargestellt werden:
+
'''(6)'''&nbsp; The frequency response just calculated for the frequency $f = 250 \ \rm kHz$ can be displayed as follows:
[[File:P_ID2162__Mob_A_2_3e.png|right|frame|Betragsfrequenzgang beim Dreiwegekanal]]
+
[[File:P_ID2162__Mob_A_2_3e.png|right|frame|Amplitude frequency response for three-way channel]]
:$$H(f = 250\,{\rm kHz})= k_1 + k_2 \cdot {\rm e}^{-{\rm j}\cdot \pi}+ k_3 \cdot {\rm e}^{-{\rm j}\cdot 5\pi} = k_1 - k_2 - k_3
+
$$H(f = 250\,{\rm kHz})= k_1 + k_2 \cdot {\rm e}^{-{\rm j}\cdot \pi}+ k_3 \cdot {\rm e}^{-{\rm j}\cdot 5\pi} = k_1 - k_2 - k_3
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Wählt man nun &nbsp;  
+
If you now dial &nbsp;  
:$$k_3 = k_1 - k_2 = 0.75 + 0.50\hspace{0.1cm} \underline {= 1.25}\hspace{0.05cm},$$  
+
:$$k_3 = k_1 - k_2 = 0.75 + 0.50\hspace{0.1cm} \underline {= 1.25}\hspace{0.05cm},$$  
so ergibt sich $|H(f = 250 \ \rm kHz)| = 0$ und damit der für diese Signalfrequenz ungünstigste Wert.
+
the result is $|H(f = 250 \ \rm kHz)| = 0$ and thus the most unfavorable value for this signal frequency.
  
  
Die Grafik zeigt $|H(f)|$ im Bereich zwischen $0$ und $500 \ \rm kHz$:  
+
The graph shows $|H(f)|$ in the range between $0$ and $500 \ \rm kHz$:  
*Die blaue Kurve gilt für $k_3 = 0.25$ entsprechend den Vorgaben von Teilaufgabe '''(4)'''.
+
*The blue curve applies to $k_3 = 0.25$ according to the specifications of subtask '''(4)''.
*Die rote Kurve gilt für $k_3 = 1.25$, dem ungünstigsten Wert für $f = 250 \ \rm kHz$.
+
*The red curve is valid for $k_3 = 1.25$, the most unfavourable value for $f = 250 \ \rm kHz$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
 
  
  
 
[[Category:Exercises for Mobile Communications|^2.2 Multi-Path Reception in Wireless Systems^]]
 
[[Category:Exercises for Mobile Communications|^2.2 Multi-Path Reception in Wireless Systems^]]

Revision as of 15:32, 15 April 2020

Vorgegebene Rechteckantwort

We consider a multipath channel, which is characterized by the following impulse response: $$h(\tau, \hspace{0.05cm} t) = h(\tau) = \sum_{m = 1}^{M} k_m \cdot \delta( \tau - \tau_m) \hspace{0.05cm}.$$

All coefficients  $k_{m}$  be real (positive or negative). Furthermore, it should be noted

  • From the specification  $h(\tau, \hspace{0.05cm}t) = h(\tau)$  you can see that the channel is time invariant.
  • Generally, the channel  $M$  has paths. The  $M$–value should be determined from the graphic.
  • The following relations apply to the delay times:  $\tau_1 < \tau_2 < \tau_3 < \ \ text{...}$


The diagram shows the output signal  $r(\tau)$  of the channel when the following transmit signal is present at the input (shown in the equivalent low-pass range): $$s(\tau) = \left\{ \begin{array}{c} s_0\\\ 0 \end{array} \right.\quad \begin{\array}{*{*1}c} 0 \le \tau < 5\, {\rm µ s} \\ {\arm else}. \\ \end{array}$$

The corresponding impulse response  $h(\tau)$  as well as the transfer function  $H(f)$ is searched for.




Notes:

  • This task refers to the chapter  Mehrwegeempfang beim Mobilfunk.
  • For the solution of the subtask '(1) assume that the impulse response  $h(\tau)$  extends over 5 microseconds.



Questionnaire

1

What is the impulse response  $h(\tau)$? How many paths  $(M)$  are there here?

$M \ = \ $

Specify the first three delay times  $\tau_m$ .
|type="{}"}
$\ dew_1 \ = \ $

$\ \ \rm µ s$
$\tau_2 \ = \ $

$\ \ \rm µ s$
$\tau_3 \ = \ $

$\ \ \rm µ s$

2

What are the weights of the first three Diraculsions?

$k_1 \ = \ $

$k_2 \ = \ $

$k_3 \ = \ $

3

Calculate the frequency response  $H(f)$ What is the frequency period  $f_0$?
Note:   With integer  $i$  must  $H(f + i \cdot f_0) = H(f)$  apply.

$f_0 \ = \ $

$\ \ \rm kHz$

4

Calculate the magnitude frequency response Which values result for the frequencies  $f = 0$,  $f = 250 \ \rm kHz$  and  $f = 500 \ \rm kHz$?

$|H(f = 0)| \ = \ $

$|H(f = 250 \ \rm kHz)| \ = \ $

$|H(f = 500 \ \rm kHz)| \ = \ $

5

What is the worst value  $({\rm worst \ case})$  for  $k_3$  regarding the frequency  $f = 250 \ \rm kHz$?

$k_3 \ = \ $


Sample solution

(1)  Here $r(\tau) = s(\tau) ∗ h(\tau)$ is valid, where $s(\tau)$ denotes a rectangular pulse of duration $T = 5 \ \ \rm µ s$ and the impulse response $h(\tau)$ is generally made up of $M$ weighted Dirac functions at $\tau_1, \tau_2, \ \ \ \ text{...} \ , \tau_M$

The sketched output signal $r(\tau)$ can only result if

  • $\tau_1 = 0$ (otherwise $r(\tau)$ would not start at $\tau = 0$),
  • $\tau_M = 10 \ \ \rm µ s$ is (this results in the rectangular course between $10 \ \ \rm µ s$ and $15 \ \ \rm µ s$),
  • in between another Dirac function at $\tau_2 = 2 \ \ \rm µ s$ occurs.


That means:   The impulse response here consists of $\underline {M = 3}$ Dirac functions.


(2)  As already calculated in the first subtask, one gets

$$\tau_1 \hspace{0.1cm} \underline {= 0}\hspace{0.05cm},\hspace{0.2cm}\tau_2 \hspace{0.1cm} \underline {= 2\,{\rm µ s}}\hspace{0.05cm},\hspace{0.2cm}\tau_3 \hspace{0.1cm} \underline {= 10\,{\rm µ s}}\hspace{0.05cm}.$$


(3)  If you compare input $s(\tau)$ and output $r(\tau)$, you will get the following results:

  • Interval $0 < \tau < 2 \ {\rm µ s} \text \ \, s(\tau) = s_0, \hspace{1cm} r(\tau) = 0.75 \cdot s_0 \,\,\Rightarrow\,\, k_1 \ \underline {= 0.75}$,
  • Interval $2 \ {\rm µ s} < \tau < 5 \ {\rm µ s} \text \ \, \hspace{2.4cm} r(\tau) =(k_1 + k_2) \cdot s_0 = 0.25 \cdot s_0 \Rightarrow k_2 \ \underline {= \, –0.50}$,
  • interval $10 \ {\rm µ s} < \tau < 15 \ {\rm µ s} \text \ \,\hspace{\a6}{\a6} r(\tau} =k_3 \cdot s_0 = 0.25 \cdot s_0 \,\Rightarrow\, k_3 \ \underline {= 0.25}$.

(4)  With the displacement theorem one obtains for the Fourier transform of the impulse response $h(\tau)$: $$h(\tau) = k_1 \cdot \delta( \tau) + k_2 \cdot \delta( \tau - \tau_2)+ k_3 \cdot \delta( \tau - \tau_3) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}H(f) = k_1 + k_2 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_2}+ k_3 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_3} \hspace{0.05cm}. $$

Analysis of the individual contributions leads to the following conclusion:

  • The first share is constant  ⇒  period $f_1 → ∞$.
  • The second share is periodic with $f_2 = 1/\tau_2 = 500 \ \rm kHz$.
  • The third portion is periodic with $f_3 = 1/\thaw_3 = 100 \ \rm kHz$.


⇒   In total, $H(f)$ is thus periodic with $f_0 \ \underline {= 500 \ \ \rm kHz}$.


(5)  With $A = 2\pi f \cdot \tau_2$ and $B = 2\pi f \cdot \tau_3$ you get

$$|H(f)|^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} H(f) \cdot H^{\star}(f)= \left [ \frac {3}{4} - \frac {1}{2} \cdot {\rm e}^{-{\rm j}A} + \frac {1}{4} \cdot {\rm e}^{-{\rm j}B}\right ] \left [ \frac {3}{4} - \frac {1}{2} \cdot {\rm e}^{{{\rm j}A} + \frac {1}{4} \cdot {\rm e}^{{\rm j}B}\right ]$ $$\Rightarrow \hspace{0.3cm} |H(f)|^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {9}{16}- \frac {3 {\rm e}^{{\rm j}A}}{8} +\frac {3{\rm e}^{{\rm j}B}}{16}
 - \frac {3{\rm e}^{-{\rm j}A}}{8} +\frac {1}{4}- \frac {{\rm e}^{{\rm j}(B-A)}}{8} +\frac {3{\rm e}^{-{\rm j}B}{16}  
 - \frac {{{\rm e}^{{{\rm j}(A-B)}}{8} +\frac{1}{16 }=$$
:$$\hspace{2.1cm} \ = \ \hspace{-0.1cm}\frac {7}{8}- \frac {3}{8} \cdot \left [ {\rm e}^{{\rm j}A} + {\rm e}^{-{\rm j}A}\right ]

\frac {3}{16} \cdot \left [ {\rm e}^{{\rm j}B} + {\rm e}^{-{\rm j}B}\right ]- \frac {1}{8} \cdot \left [ {\rm e}^{{{\rm j}(B-A)} + {\rm e}^{-{\rm j}(B-A)}\right ]\hspace{0.05cm}.$ This results in the [[Signal representation/For_calculation_with_complex_numbers#Depiction_by_amount_and_phase|set by Euler]] with consideration of the frequency periodicity: :'"`UNIQ-MathJax36-QINU`"' '"`UNIQ-MathJax37-QINU`"' :'"`UNIQ-MathJax38-QINU`"' '''(6)'''  The frequency response just calculated for the frequency $f = 250 \ \rm kHz$ can be displayed as follows: [[File:P_ID2162__Mob_A_2_3e.png|right|frame|Amplitude frequency response for three-way channel]] '"`UNIQ-MathJax39-QINU`"' If you now dial   :'"`UNIQ-MathJax40-QINU`"' the result is $|H(f = 250 \ \rm kHz)| = 0$ and thus the most unfavorable value for this signal frequency. The graph shows $|H(f)|$ in the range between $0$ and $500 \ \rm kHz$: *The blue curve applies to $k_3 = 0.25$ according to the specifications of subtask '''(4)''. *The red curve is valid for $k_3 = 1.25$, the most unfavourable value for $f = 250 \ \rm kHz$.