Difference between revisions of "Aufgaben:Exercise 2.4: GF(2 to the Power of 2) Representation Forms"

From LNTwww
(Die Seite wurde neu angelegt: „{{quiz-Header|Buchseite=Kanalcodierung/Erweiterungskörper }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice Frage |type="[]"…“)
 
 
(30 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Erweiterungskörper
+
{{quiz-Header|Buchseite=Channel_Coding/Extension_Field}}
  
 +
[[File:EN_KC_A_2_4.png|right|frame|Three representation forms for &nbsp;${\rm GF}(2^2)$]]
 +
Opposite you can see the addition table as well as the multiplication table for the extension field&nbsp; $\rm GF(2^2)$&nbsp; in three different variants:
 +
* the&nbsp;  '''polynomial representation''',
  
 +
* the&nbsp;  '''coefficient vector representation''',
  
}}
+
* the&nbsp;  '''exponent representation'''.
  
[[File:|right|]]
 
  
  
===Fragebogen===
 
  
 +
Hints:
 +
* The exercise refers to the chapter&nbsp; [[Channel_Coding/Extension_Field|"Extension fields"]].
 +
 +
* All necessary information about&nbsp; ${\rm GF}(2^2)$&nbsp; can be found on the&nbsp; [[Channel_Coding/Extension_Field#GF.2822.29_.E2.80.93_Example_of_an_extension_field|"first page"]]&nbsp; of this chapter.
 +
 +
* In subtask&nbsp; '''(4)'''&nbsp; the following expressions are considered:
 +
:$$A = z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3,$$
 +
:$$B = (z_0 + z_1 + z_2) \cdot (z_0 + z_1 + z_3).$$
 +
 +
 +
 +
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{What characteristics can be recognized from the polynomial representation?
 +
|type="[]"}
 +
+ The elements&nbsp; "$\alpha$"&nbsp; and&nbsp; "$1 + \alpha$"&nbsp; are neither&nbsp; $0$&nbsp; nor&nbsp; $1$.
 +
+ The arithmetic operations are performed modulo&nbsp; $2$.
 +
- The arithmetic operations are performed modulo&nbsp; $4$.
 +
- One recognizes the result &nbsp; $\alpha^2 + \alpha + 1 = 0$ &nbsp; from the addition table.
 +
+ One recognizes the result &nbsp; $\alpha^2 + \alpha + 1 = 0$ &nbsp; from the multiplication table.
 +
 
 +
{What is the relationship between the coefficient vector and the polynomial representation? <br>Let&nbsp; $k_0 &#8712; \{0, \, 1\}$&nbsp; and&nbsp; $k_1 &#8712; \{0, \, 1\}$ hold.
 +
|type="()"}
 +
- "$(k_0 \ k_1)"$&nbsp; refers to the element&nbsp; "$k_1 \cdot \alpha + k_0$".
 +
+ "$(k_1 \ k_0)$"&nbsp; refers to the element&nbsp; "$k_1 \cdot \alpha + k_0$".
 +
- There is no relationship between the two representations.
 +
 
 +
{How are polynomial and exponent representation related?
 +
|type="[]"}
 +
- No connections can be seen.
 +
+ The elements&nbsp; "$0, \ 1$"&nbsp; and&nbsp; "$\alpha$"&nbsp; are the same in both representations.
 +
+ The element&nbsp; "$1 + \alpha$"&nbsp; is&nbsp; "$\alpha^2$"&nbsp; in the exponent representation.
 +
- The element&nbsp; "$\alpha^2$"&nbsp; of the exponent representation stands for&nbsp; "$\alpha \cdot (1 + \alpha)$".
 +
 
 +
{Calculate the expressions&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; according to these three forms of representation.&nbsp; Which statements are true?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ It holds&nbsp; $A = z_0$,
+ Richtig
+
- It holds&nbsp; $A = z_2$,
 +
+ It holds&nbsp; $B = z_1$,
 +
- It holds&nbsp; $B = z_3$.
 +
</quiz>
 +
 
 +
===Solution===
 +
{{ML-Kopf}}
 +
'''(1)'''&nbsp; The&nbsp; <u>proposed solutions 1, 2 and 5</u>&nbsp; are applicable.&nbsp; <u>Justification:</u>
 +
* If&nbsp; $\alpha = 0$&nbsp; or&nbsp; $\alpha = 1$,&nbsp; the pseudo element&nbsp; $\alpha$&nbsp; would be indistinguishable from the other two&nbsp; ${\rm GF}(2)$&nbsp; elements&nbsp; $0$&nbsp; and&nbsp; $1$.
 +
 
 +
* The modulo-2 calculation can be recognized from the addition table.&nbsp; For example,&nbsp; $1 + 1 = 0, \ \alpha + \alpha = 0, \ (1 + \alpha) + (1 + \alpha) = 0$, etc.
 +
* From the multiplication table we see that&nbsp; $\alpha^2 = \alpha \cdot \alpha = 1 + \alpha$&nbsp; holds&nbsp; $($3rd row,&nbsp; 3rd column$)$.&nbsp; Thus also
 +
:$$\alpha^2 + \alpha + 1 = 0.$$
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; Correct is the&nbsp; <u>solution suggestion 2</u>.&nbsp; Thus
 +
*"$01$"&nbsp; for the element&nbsp; "$1$"&nbsp; and
 +
 +
*"$10$"&nbsp; for the element&nbsp; "$\alpha$".
 +
 
  
  
{Input-Box Frage
 
|type="{}"}
 
$\alpha$ = { 0.3 }
 
  
 +
'''(3)'''&nbsp; Correct are the&nbsp; <u>solutions 2 and 3</u>:
 +
*It is true that&nbsp; $\alpha^0 = 1$&nbsp; and&nbsp; $\alpha^1 = \alpha$.
 +
 +
*For the underlying polynomial&nbsp; $p(x) = x^2 + x + 1$,&nbsp; it follows further  from&nbsp; $p(\alpha) = 0$:
 +
:$$\alpha^2 +\alpha + 1 = 0  \hspace{0.3cm} \Rightarrow\hspace{0.3cm} \alpha^2 =\alpha + 1 \hspace{0.05cm}.$$
  
  
</quiz>
 
  
===Musterlösung===
+
'''(4)'''&nbsp; According to the tables of polynomial representation holds:
{{ML-Kopf}}
+
:$$A \hspace{-0.15cm} \ = \ \hspace{-0.15cm} z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3 = \alpha \cdot \alpha + \alpha \cdot (1+\alpha) + (1+\alpha) \cdot (1+\alpha) = (1+\alpha) + (1) + (\alpha) = 0 = z_0
'''1.'''
+
\hspace{0.05cm},$$
'''2.'''
+
:$$ B \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (z_0 +  z_1 + z_2) \cdot (z_0 +  z_1 + z_3) =  (0 + 1 + \alpha) \cdot (0 + 1 + 1+ \alpha) = (1+\alpha) \cdot \alpha = 1 = z_1
'''3.'''
+
\hspace{0.05cm}.$$
'''4.'''
+
 
'''5.'''
+
*Therefore,&nbsp; the&nbsp; <u>proposed solutions 1 and 2</u>&nbsp; are correct.  
'''6.'''
 
'''7.'''
 
{{ML-Fuß}}
 
  
 +
*The same results are obtained with the coefficient vector representation:
 +
:$$A \hspace{-0.15cm} \ = \ \hspace{-0.15cm} z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3 = (10) \cdot (10) + (10) \cdot (11) + (11) \cdot (11) = (11) + (01) + (10) = (00) = 0 = z_0
 +
\hspace{0.05cm},$$
 +
:$$B \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (z_0 +  z_1 + z_2) \cdot (z_0 +  z_1 + z_3)  =  [(00) + (01) + (10)]  \cdot [(00) + (01) + (11)] =(11) \cdot (10) = (01) = z_1
 +
\hspace{0.05cm}.$$
  
 +
*And finally with the exponent representation:
 +
:$$A \hspace{-0.15cm} \ = \ \hspace{-0.15cm} z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3 = \alpha^1 \cdot \alpha^1 + \alpha^1 \cdot \alpha^2 + \alpha^2 \cdot \alpha^2 =
 +
\alpha^2 + \alpha^3 + \alpha^4 =  \alpha^2 + \alpha^0 + \alpha^1 = 0 = z_0
 +
\hspace{0.05cm},$$
 +
:$$B \hspace{-0.15cm} \ = \ \hspace{-0.15cm}(z_0 +  z_1 + z_2) \cdot (z_0 +  z_1 + z_3)  =  [0 + \alpha^0 + \alpha^1]  \cdot [0 + \alpha^0 + \alpha^2] = \alpha^2 \cdot \alpha^1 = \alpha^3 = \alpha^0 = z_1
 +
\hspace{0.05cm}.$$
 +
{{ML-Fuß}}
  
[[Category:Aufgaben zu  Kanalcodierung|^2.2 Erweiterungskörper
 
  
  
^]]
+
[[Category:Channel Coding: Exercises|^2.2 Extension Field^]]

Latest revision as of 16:26, 2 October 2022

Three representation forms for  ${\rm GF}(2^2)$

Opposite you can see the addition table as well as the multiplication table for the extension field  $\rm GF(2^2)$  in three different variants:

  • the  polynomial representation,
  • the  coefficient vector representation,
  • the  exponent representation.



Hints:

  • All necessary information about  ${\rm GF}(2^2)$  can be found on the  "first page"  of this chapter.
  • In subtask  (4)  the following expressions are considered:
$$A = z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3,$$
$$B = (z_0 + z_1 + z_2) \cdot (z_0 + z_1 + z_3).$$



Questions

1

What characteristics can be recognized from the polynomial representation?

The elements  "$\alpha$"  and  "$1 + \alpha$"  are neither  $0$  nor  $1$.
The arithmetic operations are performed modulo  $2$.
The arithmetic operations are performed modulo  $4$.
One recognizes the result   $\alpha^2 + \alpha + 1 = 0$   from the addition table.
One recognizes the result   $\alpha^2 + \alpha + 1 = 0$   from the multiplication table.

2

What is the relationship between the coefficient vector and the polynomial representation?
Let  $k_0 ∈ \{0, \, 1\}$  and  $k_1 ∈ \{0, \, 1\}$ hold.

"$(k_0 \ k_1)"$  refers to the element  "$k_1 \cdot \alpha + k_0$".
"$(k_1 \ k_0)$"  refers to the element  "$k_1 \cdot \alpha + k_0$".
There is no relationship between the two representations.

3

How are polynomial and exponent representation related?

No connections can be seen.
The elements  "$0, \ 1$"  and  "$\alpha$"  are the same in both representations.
The element  "$1 + \alpha$"  is  "$\alpha^2$"  in the exponent representation.
The element  "$\alpha^2$"  of the exponent representation stands for  "$\alpha \cdot (1 + \alpha)$".

4

Calculate the expressions  $A$  and  $B$  according to these three forms of representation.  Which statements are true?

It holds  $A = z_0$,
It holds  $A = z_2$,
It holds  $B = z_1$,
It holds  $B = z_3$.


Solution

(1)  The  proposed solutions 1, 2 and 5  are applicable.  Justification:

  • If  $\alpha = 0$  or  $\alpha = 1$,  the pseudo element  $\alpha$  would be indistinguishable from the other two  ${\rm GF}(2)$  elements  $0$  and  $1$.
  • The modulo-2 calculation can be recognized from the addition table.  For example,  $1 + 1 = 0, \ \alpha + \alpha = 0, \ (1 + \alpha) + (1 + \alpha) = 0$, etc.
  • From the multiplication table we see that  $\alpha^2 = \alpha \cdot \alpha = 1 + \alpha$  holds  $($3rd row,  3rd column$)$.  Thus also
$$\alpha^2 + \alpha + 1 = 0.$$


(2)  Correct is the  solution suggestion 2.  Thus

  • "$01$"  for the element  "$1$"  and
  • "$10$"  for the element  "$\alpha$".



(3)  Correct are the  solutions 2 and 3:

  • It is true that  $\alpha^0 = 1$  and  $\alpha^1 = \alpha$.
  • For the underlying polynomial  $p(x) = x^2 + x + 1$,  it follows further from  $p(\alpha) = 0$:
$$\alpha^2 +\alpha + 1 = 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} \alpha^2 =\alpha + 1 \hspace{0.05cm}.$$


(4)  According to the tables of polynomial representation holds:

$$A \hspace{-0.15cm} \ = \ \hspace{-0.15cm} z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3 = \alpha \cdot \alpha + \alpha \cdot (1+\alpha) + (1+\alpha) \cdot (1+\alpha) = (1+\alpha) + (1) + (\alpha) = 0 = z_0 \hspace{0.05cm},$$
$$ B \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (z_0 + z_1 + z_2) \cdot (z_0 + z_1 + z_3) = (0 + 1 + \alpha) \cdot (0 + 1 + 1+ \alpha) = (1+\alpha) \cdot \alpha = 1 = z_1 \hspace{0.05cm}.$$
  • Therefore,  the  proposed solutions 1 and 2  are correct.
  • The same results are obtained with the coefficient vector representation:
$$A \hspace{-0.15cm} \ = \ \hspace{-0.15cm} z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3 = (10) \cdot (10) + (10) \cdot (11) + (11) \cdot (11) = (11) + (01) + (10) = (00) = 0 = z_0 \hspace{0.05cm},$$
$$B \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (z_0 + z_1 + z_2) \cdot (z_0 + z_1 + z_3) = [(00) + (01) + (10)] \cdot [(00) + (01) + (11)] =(11) \cdot (10) = (01) = z_1 \hspace{0.05cm}.$$
  • And finally with the exponent representation:
$$A \hspace{-0.15cm} \ = \ \hspace{-0.15cm} z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3 = \alpha^1 \cdot \alpha^1 + \alpha^1 \cdot \alpha^2 + \alpha^2 \cdot \alpha^2 = \alpha^2 + \alpha^3 + \alpha^4 = \alpha^2 + \alpha^0 + \alpha^1 = 0 = z_0 \hspace{0.05cm},$$
$$B \hspace{-0.15cm} \ = \ \hspace{-0.15cm}(z_0 + z_1 + z_2) \cdot (z_0 + z_1 + z_3) = [0 + \alpha^0 + \alpha^1] \cdot [0 + \alpha^0 + \alpha^2] = \alpha^2 \cdot \alpha^1 = \alpha^3 = \alpha^0 = z_1 \hspace{0.05cm}.$$