Difference between revisions of "Aufgaben:Exercise 2.4: GF(2 to the Power of 2) Representation Forms"

From LNTwww
m (Text replacement - "„" to """)
 
(7 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Erweiterungskörper}}
+
{{quiz-Header|Buchseite=Channel_Coding/Extension_Field}}
  
[[File:P_ID2507__KC_A_2_4_neu.png|right|frame|Drei Darstellungen für  ${\rm GF}(2^2)$]]
+
[[File:EN_KC_A_2_4.png|right|frame|Three representation forms for  ${\rm GF}(2^2)$]]
Nebenstehend sehen Sie für den Erweiterungskörper  $\rm GF(2^2)$  die Additions– sowie die Multiplikationstabelle in drei verschiedenen Varianten:
+
Opposite you can see the addition table as well as the multiplication table for the extension field  $\rm GF(2^2)$  in three different variants:
* die Polynomdarstellung,
+
* the   '''polynomial representation''',
* die Koeffizientenvektordarstellung,
 
* die Exponentendarstellung.
 
  
 +
* the   '''coefficient vector representation''',
  
 +
* the   '''exponent representation'''.
  
  
  
  
''Hinweise:''
+
Hints:
* Die Aufgabe bezieht sich auf das Kapitel  [[Channel_Coding/Erweiterungsk%C3%B6rper|Erweiterungskörper]].
+
* The exercise refers to the chapter  [[Channel_Coding/Extension_Field|"Extension fields"]].
* Alle notwendigen Informationen zu  ${\rm GF}(2^2)$  finden Sie auf der  [[Channel_Coding/Erweiterungsk%C3%B6rper#GF.2822.29_.E2.80.93_Beispiel_eines_Erweiterungsk.C3.B6rpers|ersten Seite]]  dieses Kapitels.
+
 
* In der Teilaufgabe '''(4)''' werden folgende Ausdrücke betrachtet:
+
* All necessary information about  ${\rm GF}(2^2)$  can be found on the  [[Channel_Coding/Extension_Field#GF.2822.29_.E2.80.93_Example_of_an_extension_field|"first page"]]  of this chapter.
 +
 
 +
* In subtask  '''(4)'''  the following expressions are considered:
 
:$$A = z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3,$$
 
:$$A = z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3,$$
 
:$$B = (z_0 + z_1 + z_2) \cdot (z_0 + z_1 + z_3).$$
 
:$$B = (z_0 + z_1 + z_2) \cdot (z_0 + z_1 + z_3).$$
Line 22: Line 24:
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Charakteristika erkennt man aus der Polynomdarstellung?
+
{What characteristics can be recognized from the polynomial representation?
 
|type="[]"}
 
|type="[]"}
+ Die Elemente&nbsp; $\alpha$&nbsp; und&nbsp; $1 + \alpha$&nbsp; sind weder&nbsp; $0$&nbsp; noch&nbsp; $1$.
+
+ The elements&nbsp; "$\alpha$"&nbsp; and&nbsp; "$1 + \alpha$"&nbsp; are neither&nbsp; $0$&nbsp; nor&nbsp; $1$.
+ Die Rechenoperationen erfolgen modulo&nbsp; $2$.
+
+ The arithmetic operations are performed modulo&nbsp; $2$.
- Die Rechenoperationen erfolgen modulo&nbsp; $4$.
+
- The arithmetic operations are performed modulo&nbsp; $4$.
- Man erkennt das Ergebnis&nbsp; $\alpha^2 + \alpha + 1 = 0$&nbsp; aus der Additionstabelle.
+
- One recognizes the result &nbsp; $\alpha^2 + \alpha + 1 = 0$ &nbsp; from the addition table.
+ Man erkennt das Ergebnis&nbsp; $\alpha^2 + \alpha + 1 = 0$&nbsp; aus der Multiplikationstabelle.
+
+ One recognizes the result &nbsp; $\alpha^2 + \alpha + 1 = 0$ &nbsp; from the multiplication table.
  
{Welcher Zusammenhang besteht zwischen der Koeffizientenvektor&ndash; und der Polynomdarstellung? Es gelte&nbsp; $k_0 &#8712; \{0, \, 1\}$&nbsp; und&nbsp; $k_1 &#8712; \{0, \, 1\}$.
+
{What is the relationship between the coefficient vector and the polynomial representation? <br>Let&nbsp; $k_0 &#8712; \{0, \, 1\}$&nbsp; and&nbsp; $k_1 &#8712; \{0, \, 1\}$ hold.
 
|type="()"}
 
|type="()"}
- $(k_0 \ k_1)$&nbsp; bezieht sich auf das Element&nbsp; $k_1 \cdot \alpha + k_0$.
+
- "$(k_0 \ k_1)"$&nbsp; refers to the element&nbsp; "$k_1 \cdot \alpha + k_0$".
+ $(k_1 \ k_0)$&nbsp; bezieht sich auf das Element&nbsp; $k_1 \cdot \alpha + k_0$.
+
+ "$(k_1 \ k_0)$"&nbsp; refers to the element&nbsp; "$k_1 \cdot \alpha + k_0$".
- Zwischen beiden Darstellungen besteht keinerlei Zusammenhang.
+
- There is no relationship between the two representations.
  
{Wie hängen Polynom&ndash; und Exponentendarstellung zusammen?
+
{How are polynomial and exponent representation related?
 
|type="[]"}
 
|type="[]"}
- Es sind keine Zusammenhänge erkennbar.
+
- No connections can be seen.
+ Die Elemente&nbsp; $0, \ 1$&nbsp; und&nbsp; $\alpha$&nbsp; sind in beiden Darstellungen gleich.
+
+ The elements&nbsp; "$0, \ 1$"&nbsp; and&nbsp; "$\alpha$"&nbsp; are the same in both representations.
+ Das Element&nbsp; $1 + \alpha$&nbsp; lautet in der Exponentendarstellung&nbsp; $\alpha^2$.
+
+ The element&nbsp; "$1 + \alpha$"&nbsp; is&nbsp; "$\alpha^2$"&nbsp; in the exponent representation.
- Das Element&nbsp; $\alpha^2$&nbsp; der Exponentendarstellung steht für&nbsp; $\alpha \cdot (1 + \alpha)$.
+
- The element&nbsp; "$\alpha^2$"&nbsp; of the exponent representation stands for&nbsp; "$\alpha \cdot (1 + \alpha)$".
  
{Berechnen Sie die Ausdrücke&nbsp; $A$&nbsp; und&nbsp; $B$&nbsp; nach diesen drei Darstellungsformen. Welche Aussagen treffen zu?
+
{Calculate the expressions&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; according to these three forms of representation.&nbsp; Which statements are true?
 
|type="[]"}
 
|type="[]"}
+ Es gilt&nbsp; $A = z_0$,
+
+ It holds&nbsp; $A = z_0$,
- Es gilt&nbsp; $A = z_2$,
+
- It holds&nbsp; $A = z_2$,
+ Es gilt&nbsp; $B = z_1$,
+
+ It holds&nbsp; $B = z_1$,
- Es gilt&nbsp; $B = z_3$.
+
- It holds&nbsp; $B = z_3$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Zutreffend sind die <u>Lösungsvorschläge 1, 2 und 5</u>.  
+
'''(1)'''&nbsp; The&nbsp; <u>proposed solutions 1, 2 and 5</u>&nbsp; are applicable.&nbsp; <u>Justification:</u>
 +
* If&nbsp; $\alpha = 0$&nbsp; or&nbsp; $\alpha = 1$,&nbsp; the pseudo element&nbsp; $\alpha$&nbsp; would be indistinguishable from the other two&nbsp; ${\rm GF}(2)$&nbsp; elements&nbsp; $0$&nbsp; and&nbsp; $1$.
  
Begründung:
+
* The modulo-2 calculation can be recognized from the addition table.&nbsp; For example,&nbsp; $1 + 1 = 0, \ \alpha + \alpha = 0, \ (1 + \alpha) + (1 + \alpha) = 0$, etc.
* Wäre $\alpha = 0$ oder $\alpha = 1$, so wäre das Pseudoelement $\alpha$ nicht mehr unterscheidbar von den beiden anderen ${\rm GF}(2)$&ndash;Elementen $0$ und $1$.
+
* From the multiplication table we see that&nbsp; $\alpha^2 = \alpha \cdot \alpha = 1 + \alpha$&nbsp; holds&nbsp; $($3rd row,&nbsp; 3rd column$)$.&nbsp; Thus also
* Die Modulo&ndash;$2$&ndash;Rechnung erkennt man aus der Additionstabelle. Beispielsweise gilt $1 + 1 = 0, \ \alpha + \alpha = 0, \ (1 + \alpha) + (1 + \alpha) = 0$, usw.
 
* Aus der Multiplikationstabelle geht hervor, dass $\alpha^2 = \alpha \cdot \alpha = 1 + \alpha$ gilt (3. Zeile, 3. Spalte). Damit gilt auch
 
 
:$$\alpha^2 + \alpha + 1 = 0.$$
 
:$$\alpha^2 + \alpha + 1 = 0.$$
  
  
  
'''(2)'''&nbsp; Richtig ist <u>Lösungsvorschlag 2</u>. So steht
+
'''(2)'''&nbsp; Correct is the&nbsp; <u>solution suggestion 2</u>.&nbsp; Thus
*"$01$" für das Element "$1$" und
+
*"$01$"&nbsp; for the element&nbsp; "$1$"&nbsp; and
*"$10$" für das Element "$\alpha$".
+
 +
*"$10$"&nbsp; for the element&nbsp; "$\alpha$".
 +
 
  
  
  
'''(3)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u>:  
+
'''(3)'''&nbsp; Correct are the&nbsp; <u>solutions 2 and 3</u>:  
*Es gilt $\alpha^0 = 1$ und $\alpha^1 = \alpha$.  
+
*It is true that&nbsp; $\alpha^0 = 1$&nbsp; and&nbsp; $\alpha^1 = \alpha$.
*Bei dem zugrundeliegenden Polynom $p(x) = x^2 + x + 1$ folgt aus $p(\alpha) = 0$ weiterhin:
+
 +
*For the underlying polynomial&nbsp; $p(x) = x^2 + x + 1$,&nbsp; it follows further  from&nbsp; $p(\alpha) = 0$:
 
:$$\alpha^2 +\alpha + 1 = 0  \hspace{0.3cm} \Rightarrow\hspace{0.3cm} \alpha^2 =\alpha + 1 \hspace{0.05cm}.$$
 
:$$\alpha^2 +\alpha + 1 = 0  \hspace{0.3cm} \Rightarrow\hspace{0.3cm} \alpha^2 =\alpha + 1 \hspace{0.05cm}.$$
  
  
  
'''(4)'''&nbsp; Entsprechend den Tabellen der Polynomdarstellung gilt:
+
'''(4)'''&nbsp; According to the tables of polynomial representation holds:
 
:$$A \hspace{-0.15cm} \ = \ \hspace{-0.15cm} z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3 =  \alpha \cdot \alpha + \alpha \cdot (1+\alpha) + (1+\alpha) \cdot (1+\alpha) = (1+\alpha) + (1) + (\alpha) = 0 = z_0
 
:$$A \hspace{-0.15cm} \ = \ \hspace{-0.15cm} z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3 =  \alpha \cdot \alpha + \alpha \cdot (1+\alpha) + (1+\alpha) \cdot (1+\alpha) = (1+\alpha) + (1) + (\alpha) = 0 = z_0
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
Line 84: Line 88:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Richtig sind demnach die <u>Lösungsvorschläge 1 und 2</u>.  
+
*Therefore,&nbsp; the&nbsp; <u>proposed solutions 1 and 2</u>&nbsp; are correct.  
  
Zu den gleichen Ergebnissen kommt man mit der Koeffizientenvektordarstellung:
+
*The same results are obtained with the coefficient vector representation:
 
:$$A \hspace{-0.15cm} \ = \ \hspace{-0.15cm} z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3 = (10) \cdot (10) + (10) \cdot (11) + (11) \cdot (11) = (11) + (01) + (10) = (00) = 0 = z_0
 
:$$A \hspace{-0.15cm} \ = \ \hspace{-0.15cm} z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3 = (10) \cdot (10) + (10) \cdot (11) + (11) \cdot (11) = (11) + (01) + (10) = (00) = 0 = z_0
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
Line 92: Line 96:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Und schließlich mit der Exponentendarstellung:
+
*And finally with the exponent representation:
 
:$$A \hspace{-0.15cm} \ = \ \hspace{-0.15cm} z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3 = \alpha^1 \cdot \alpha^1 + \alpha^1 \cdot \alpha^2 + \alpha^2 \cdot \alpha^2 =
 
:$$A \hspace{-0.15cm} \ = \ \hspace{-0.15cm} z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3 = \alpha^1 \cdot \alpha^1 + \alpha^1 \cdot \alpha^2 + \alpha^2 \cdot \alpha^2 =
 
  \alpha^2 + \alpha^3 + \alpha^4 =  \alpha^2 + \alpha^0 + \alpha^1 = 0 = z_0
 
  \alpha^2 + \alpha^3 + \alpha^4 =  \alpha^2 + \alpha^0 + \alpha^1 = 0 = z_0
Line 102: Line 106:
  
  
[[Category:Channel Coding: Exercises|^2.2 Erweiterungskörper^]]
+
[[Category:Channel Coding: Exercises|^2.2 Extension Field^]]

Latest revision as of 16:26, 2 October 2022

Three representation forms for  ${\rm GF}(2^2)$

Opposite you can see the addition table as well as the multiplication table for the extension field  $\rm GF(2^2)$  in three different variants:

  • the  polynomial representation,
  • the  coefficient vector representation,
  • the  exponent representation.



Hints:

  • All necessary information about  ${\rm GF}(2^2)$  can be found on the  "first page"  of this chapter.
  • In subtask  (4)  the following expressions are considered:
$$A = z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3,$$
$$B = (z_0 + z_1 + z_2) \cdot (z_0 + z_1 + z_3).$$



Questions

1

What characteristics can be recognized from the polynomial representation?

The elements  "$\alpha$"  and  "$1 + \alpha$"  are neither  $0$  nor  $1$.
The arithmetic operations are performed modulo  $2$.
The arithmetic operations are performed modulo  $4$.
One recognizes the result   $\alpha^2 + \alpha + 1 = 0$   from the addition table.
One recognizes the result   $\alpha^2 + \alpha + 1 = 0$   from the multiplication table.

2

What is the relationship between the coefficient vector and the polynomial representation?
Let  $k_0 ∈ \{0, \, 1\}$  and  $k_1 ∈ \{0, \, 1\}$ hold.

"$(k_0 \ k_1)"$  refers to the element  "$k_1 \cdot \alpha + k_0$".
"$(k_1 \ k_0)$"  refers to the element  "$k_1 \cdot \alpha + k_0$".
There is no relationship between the two representations.

3

How are polynomial and exponent representation related?

No connections can be seen.
The elements  "$0, \ 1$"  and  "$\alpha$"  are the same in both representations.
The element  "$1 + \alpha$"  is  "$\alpha^2$"  in the exponent representation.
The element  "$\alpha^2$"  of the exponent representation stands for  "$\alpha \cdot (1 + \alpha)$".

4

Calculate the expressions  $A$  and  $B$  according to these three forms of representation.  Which statements are true?

It holds  $A = z_0$,
It holds  $A = z_2$,
It holds  $B = z_1$,
It holds  $B = z_3$.


Solution

(1)  The  proposed solutions 1, 2 and 5  are applicable.  Justification:

  • If  $\alpha = 0$  or  $\alpha = 1$,  the pseudo element  $\alpha$  would be indistinguishable from the other two  ${\rm GF}(2)$  elements  $0$  and  $1$.
  • The modulo-2 calculation can be recognized from the addition table.  For example,  $1 + 1 = 0, \ \alpha + \alpha = 0, \ (1 + \alpha) + (1 + \alpha) = 0$, etc.
  • From the multiplication table we see that  $\alpha^2 = \alpha \cdot \alpha = 1 + \alpha$  holds  $($3rd row,  3rd column$)$.  Thus also
$$\alpha^2 + \alpha + 1 = 0.$$


(2)  Correct is the  solution suggestion 2.  Thus

  • "$01$"  for the element  "$1$"  and
  • "$10$"  for the element  "$\alpha$".



(3)  Correct are the  solutions 2 and 3:

  • It is true that  $\alpha^0 = 1$  and  $\alpha^1 = \alpha$.
  • For the underlying polynomial  $p(x) = x^2 + x + 1$,  it follows further from  $p(\alpha) = 0$:
$$\alpha^2 +\alpha + 1 = 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} \alpha^2 =\alpha + 1 \hspace{0.05cm}.$$


(4)  According to the tables of polynomial representation holds:

$$A \hspace{-0.15cm} \ = \ \hspace{-0.15cm} z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3 = \alpha \cdot \alpha + \alpha \cdot (1+\alpha) + (1+\alpha) \cdot (1+\alpha) = (1+\alpha) + (1) + (\alpha) = 0 = z_0 \hspace{0.05cm},$$
$$ B \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (z_0 + z_1 + z_2) \cdot (z_0 + z_1 + z_3) = (0 + 1 + \alpha) \cdot (0 + 1 + 1+ \alpha) = (1+\alpha) \cdot \alpha = 1 = z_1 \hspace{0.05cm}.$$
  • Therefore,  the  proposed solutions 1 and 2  are correct.
  • The same results are obtained with the coefficient vector representation:
$$A \hspace{-0.15cm} \ = \ \hspace{-0.15cm} z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3 = (10) \cdot (10) + (10) \cdot (11) + (11) \cdot (11) = (11) + (01) + (10) = (00) = 0 = z_0 \hspace{0.05cm},$$
$$B \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (z_0 + z_1 + z_2) \cdot (z_0 + z_1 + z_3) = [(00) + (01) + (10)] \cdot [(00) + (01) + (11)] =(11) \cdot (10) = (01) = z_1 \hspace{0.05cm}.$$
  • And finally with the exponent representation:
$$A \hspace{-0.15cm} \ = \ \hspace{-0.15cm} z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3 = \alpha^1 \cdot \alpha^1 + \alpha^1 \cdot \alpha^2 + \alpha^2 \cdot \alpha^2 = \alpha^2 + \alpha^3 + \alpha^4 = \alpha^2 + \alpha^0 + \alpha^1 = 0 = z_0 \hspace{0.05cm},$$
$$B \hspace{-0.15cm} \ = \ \hspace{-0.15cm}(z_0 + z_1 + z_2) \cdot (z_0 + z_1 + z_3) = [0 + \alpha^0 + \alpha^1] \cdot [0 + \alpha^0 + \alpha^2] = \alpha^2 \cdot \alpha^1 = \alpha^3 = \alpha^0 = z_1 \hspace{0.05cm}.$$