Difference between revisions of "Aufgaben:Exercise 2.4: GF(2 to the Power of 2) Representation Forms"

From LNTwww
Line 30: Line 30:
 
+ One recognizes the result  $\alpha^2 + \alpha + 1 = 0$  from the multiplication table.
 
+ One recognizes the result  $\alpha^2 + \alpha + 1 = 0$  from the multiplication table.
  
{Welcher Zusammenhang besteht zwischen der Koeffizientenvektor– und der Polynomdarstellung? Es gelte  $k_0 ∈ \{0, \, 1\}$  und  $k_1 ∈ \{0, \, 1\}$.
+
{What is the relationship between the coefficient vector and the polynomial representation? Let  $k_0 ∈ \{0, \, 1\}$  and  $k_1 ∈ \{0, \, 1\}$ hold.
 
|type="()"}
 
|type="()"}
- $(k_0 \ k_1)$  bezieht sich auf das Element  $k_1 \cdot \alpha + k_0$.
+
- $(k_0 \ k_1)$  refers to the element  $k_1 \cdot \alpha + k_0$.
+ $(k_1 \ k_0)$  bezieht sich auf das Element  $k_1 \cdot \alpha + k_0$.
+
+ $(k_1 \ k_0)$  refers to the element  $k_1 \cdot \alpha + k_0$.
- Zwischen beiden Darstellungen besteht keinerlei Zusammenhang.
+
- There is no relationship between the two representations.
  
{Wie hängen Polynom– und Exponentendarstellung zusammen?
+
{How are polynomial and exponent representation related?
 
|type="[]"}
 
|type="[]"}
- Es sind keine Zusammenhänge erkennbar.
+
- No connections can be seen.
+ Die Elemente  $0, \ 1$  und  $\alpha$  sind in beiden Darstellungen gleich.
+
+ The elements  $0, \ 1$  and  $\alpha$  are the same in both representations.
+ Das Element  $1 + \alpha$  lautet in der Exponentendarstellung  $\alpha^2$.
+
+ The element  $1 + \alpha$  is $\alpha^2$ in the exponent representation .
- Das Element  $\alpha^2$  der Exponentendarstellung steht für  $\alpha \cdot (1 + \alpha)$.
+
- The element  $\alpha^2$  of the exponent representation stands for  $\alpha \cdot (1 + \alpha)$.
  
{Berechnen Sie die Ausdrücke  $A$  und  $B$  nach diesen drei Darstellungsformen. Welche Aussagen treffen zu?
+
{Calculate the expressions  $A$  and  $B$  according to these three forms of representation. Which statements are true?
 
|type="[]"}
 
|type="[]"}
+ Es gilt  $A = z_0$,
+
+ It is true  $A = z_0$,
- Es gilt  $A = z_2$,
+
- It holds  $A = z_2$,
+ Es gilt  $B = z_1$,
+
+ It holds  $B = z_1$,
- Es gilt  $B = z_3$.
+
- It holds  $B = z_3$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Zutreffend sind die <u>Lösungsvorschläge 1, 2 und 5</u>.  
+
'''(1)'''&nbsp; The <u>proposed solutions 1, 2 and 5</u> are applicable.  
  
Begründung:
+
Justification:
* Wäre $\alpha = 0$ oder $\alpha = 1$, so wäre das Pseudoelement $\alpha$ nicht mehr unterscheidbar von den beiden anderen ${\rm GF}(2)$&ndash;Elementen $0$ und $1$.
+
* If $\alpha = 0$ or $\alpha = 1$, the pseudo element $\alpha$ would be indistinguishable from the other two ${\rm GF}(2)$&ndash;elements $0$ and $1$.
* Die Modulo&ndash;$2$&ndash;Rechnung erkennt man aus der Additionstabelle. Beispielsweise gilt $1 + 1 = 0, \ \alpha + \alpha = 0, \ (1 + \alpha) + (1 + \alpha) = 0$, usw.
+
* The modulo $2$ calculation can be recognized from the addition table. For example, $1 + 1 = 0, \ \alpha + \alpha = 0, \ (1 + \alpha) + (1 + \alpha) = 0$, etc.
* Aus der Multiplikationstabelle geht hervor, dass $\alpha^2 = \alpha \cdot \alpha = 1 + \alpha$ gilt (3. Zeile, 3. Spalte). Damit gilt auch
+
* From the multiplication table we see that $\alpha^2 = \alpha \cdot \alpha = 1 + \alpha$ holds (3rd row, 3rd column). Thus also
 
:$$\alpha^2 + \alpha + 1 = 0.$$
 
:$$\alpha^2 + \alpha + 1 = 0.$$
  
  
  
'''(2)'''&nbsp; Richtig ist <u>Lösungsvorschlag 2</u>. So steht
+
'''(2)'''&nbsp; Correct is <u>solution suggestion 2</u>. Thus
*"$01$" für das Element "$1$" und
+
*"$01$" for the element "$1$" and
*"$10$" für das Element "$\alpha$".
+
*"$10$" for the element "$\alpha$".
  
  
  
'''(3)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u>:  
+
 
*Es gilt $\alpha^0 = 1$ und $\alpha^1 = \alpha$.  
+
'''(3)'''&nbsp; Correct are the <u>solutions 2 and 3</u>:  
*Bei dem zugrundeliegenden Polynom $p(x) = x^2 + x + 1$ folgt aus $p(\alpha) = 0$ weiterhin:
+
*It is true that $\alpha^0 = 1$ and $\alpha^1 = \alpha$.  
 +
*For the underlying polynomial $p(x) = x^2 + x + 1$, it further follows from $p(\alpha) = 0$:
 
:$$\alpha^2 +\alpha + 1 = 0  \hspace{0.3cm} \Rightarrow\hspace{0.3cm} \alpha^2 =\alpha + 1 \hspace{0.05cm}.$$
 
:$$\alpha^2 +\alpha + 1 = 0  \hspace{0.3cm} \Rightarrow\hspace{0.3cm} \alpha^2 =\alpha + 1 \hspace{0.05cm}.$$
  
  
  
'''(4)'''&nbsp; Entsprechend den Tabellen der Polynomdarstellung gilt:
+
'''(4)'''&nbsp; According to the tables of polynomial representation holds:
 
:$$A \hspace{-0.15cm} \ = \ \hspace{-0.15cm} z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3 =  \alpha \cdot \alpha + \alpha \cdot (1+\alpha) + (1+\alpha) \cdot (1+\alpha) = (1+\alpha) + (1) + (\alpha) = 0 = z_0
 
:$$A \hspace{-0.15cm} \ = \ \hspace{-0.15cm} z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3 =  \alpha \cdot \alpha + \alpha \cdot (1+\alpha) + (1+\alpha) \cdot (1+\alpha) = (1+\alpha) + (1) + (\alpha) = 0 = z_0
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
Line 82: Line 83:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Richtig sind demnach die <u>Lösungsvorschläge 1 und 2</u>.  
+
Therefore, the <u>proposed solutions 1 and 2</u> are correct.  
  
Zu den gleichen Ergebnissen kommt man mit der Koeffizientenvektordarstellung:
+
The same results are obtained with the coefficient vector representation:
 
:$$A \hspace{-0.15cm} \ = \ \hspace{-0.15cm} z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3 = (10) \cdot (10) + (10) \cdot (11) + (11) \cdot (11) = (11) + (01) + (10) = (00) = 0 = z_0
 
:$$A \hspace{-0.15cm} \ = \ \hspace{-0.15cm} z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3 = (10) \cdot (10) + (10) \cdot (11) + (11) \cdot (11) = (11) + (01) + (10) = (00) = 0 = z_0
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
Line 90: Line 91:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Und schließlich mit der Exponentendarstellung:
+
And finally with the exponent representation:
 
:$$A \hspace{-0.15cm} \ = \ \hspace{-0.15cm} z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3 = \alpha^1 \cdot \alpha^1 + \alpha^1 \cdot \alpha^2 + \alpha^2 \cdot \alpha^2 =
 
:$$A \hspace{-0.15cm} \ = \ \hspace{-0.15cm} z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3 = \alpha^1 \cdot \alpha^1 + \alpha^1 \cdot \alpha^2 + \alpha^2 \cdot \alpha^2 =
 
  \alpha^2 + \alpha^3 + \alpha^4 =  \alpha^2 + \alpha^0 + \alpha^1 = 0 = z_0
 
  \alpha^2 + \alpha^3 + \alpha^4 =  \alpha^2 + \alpha^0 + \alpha^1 = 0 = z_0

Revision as of 16:14, 31 August 2022

Three representations for  ${\rm GF}(2^2)$

Opposite you can see for the extension field  $\rm GF(2^2)$  the addition– as well as the multiplication table in three different variants:

  • the polynomial representation,
  • the coefficient vector representation,
  • the exponent representation.



Hints:

  • The exercise refers to the chapter  extension fields.
  • All necessary information about  ${\rm GF}(2^2)$  can be found on the  first page  of this chapter.
  • In the subtask (4) the following expressions are considered:
$$A = z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3,$$
$$B = (z_0 + z_1 + z_2) \cdot (z_0 + z_1 + z_3).$$



Questions

1

What characteristics can be recognized from the polynomial representation?

The elements  $\alpha$  and  $1 + \alpha$  are neither  $0$  nor  $1$.
The arithmetic operations are modulo  $2$.
The arithmetic operations are performed modulo  $4$.
One recognizes the result  $\alpha^2 + \alpha + 1 = 0$  from the addition table.
One recognizes the result  $\alpha^2 + \alpha + 1 = 0$  from the multiplication table.

2

What is the relationship between the coefficient vector and the polynomial representation? Let  $k_0 ∈ \{0, \, 1\}$  and  $k_1 ∈ \{0, \, 1\}$ hold.

$(k_0 \ k_1)$  refers to the element  $k_1 \cdot \alpha + k_0$.
$(k_1 \ k_0)$  refers to the element  $k_1 \cdot \alpha + k_0$.
There is no relationship between the two representations.

3

How are polynomial and exponent representation related?

No connections can be seen.
The elements  $0, \ 1$  and  $\alpha$  are the same in both representations.
The element  $1 + \alpha$  is $\alpha^2$ in the exponent representation .
The element  $\alpha^2$  of the exponent representation stands for  $\alpha \cdot (1 + \alpha)$.

4

Calculate the expressions  $A$  and  $B$  according to these three forms of representation. Which statements are true?

It is true  $A = z_0$,
It holds  $A = z_2$,
It holds  $B = z_1$,
It holds  $B = z_3$.


Solution

(1)  The proposed solutions 1, 2 and 5 are applicable.

Justification:

  • If $\alpha = 0$ or $\alpha = 1$, the pseudo element $\alpha$ would be indistinguishable from the other two ${\rm GF}(2)$–elements $0$ and $1$.
  • The modulo $2$ calculation can be recognized from the addition table. For example, $1 + 1 = 0, \ \alpha + \alpha = 0, \ (1 + \alpha) + (1 + \alpha) = 0$, etc.
  • From the multiplication table we see that $\alpha^2 = \alpha \cdot \alpha = 1 + \alpha$ holds (3rd row, 3rd column). Thus also
$$\alpha^2 + \alpha + 1 = 0.$$


(2)  Correct is solution suggestion 2. Thus

  • "$01$" for the element "$1$" and
  • "$10$" for the element "$\alpha$".



(3)  Correct are the solutions 2 and 3:

  • It is true that $\alpha^0 = 1$ and $\alpha^1 = \alpha$.
  • For the underlying polynomial $p(x) = x^2 + x + 1$, it further follows from $p(\alpha) = 0$:
$$\alpha^2 +\alpha + 1 = 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} \alpha^2 =\alpha + 1 \hspace{0.05cm}.$$


(4)  According to the tables of polynomial representation holds:

$$A \hspace{-0.15cm} \ = \ \hspace{-0.15cm} z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3 = \alpha \cdot \alpha + \alpha \cdot (1+\alpha) + (1+\alpha) \cdot (1+\alpha) = (1+\alpha) + (1) + (\alpha) = 0 = z_0 \hspace{0.05cm},$$
$$ B \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (z_0 + z_1 + z_2) \cdot (z_0 + z_1 + z_3) = (0 + 1 + \alpha) \cdot (0 + 1 + 1+ \alpha) = (1+\alpha) \cdot \alpha = 1 = z_1 \hspace{0.05cm}.$$

Therefore, the proposed solutions 1 and 2 are correct.

The same results are obtained with the coefficient vector representation:

$$A \hspace{-0.15cm} \ = \ \hspace{-0.15cm} z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3 = (10) \cdot (10) + (10) \cdot (11) + (11) \cdot (11) = (11) + (01) + (10) = (00) = 0 = z_0 \hspace{0.05cm},$$
$$B \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (z_0 + z_1 + z_2) \cdot (z_0 + z_1 + z_3) = [(00) + (01) + (10)] \cdot [(00) + (01) + (11)] =(11) \cdot (10) = (01) = z_1 \hspace{0.05cm}.$$

And finally with the exponent representation:

$$A \hspace{-0.15cm} \ = \ \hspace{-0.15cm} z_2 \cdot z_2 + z_2 \cdot z_3 + z_3 \cdot z_3 = \alpha^1 \cdot \alpha^1 + \alpha^1 \cdot \alpha^2 + \alpha^2 \cdot \alpha^2 = \alpha^2 + \alpha^3 + \alpha^4 = \alpha^2 + \alpha^0 + \alpha^1 = 0 = z_0 \hspace{0.05cm},$$
$$B \hspace{-0.15cm} \ = \ \hspace{-0.15cm}(z_0 + z_1 + z_2) \cdot (z_0 + z_1 + z_3) = [0 + \alpha^0 + \alpha^1] \cdot [0 + \alpha^0 + \alpha^2] = \alpha^2 \cdot \alpha^1 = \alpha^3 = \alpha^0 = z_1 \hspace{0.05cm}.$$