Difference between revisions of "Aufgaben:Exercise 2.5: Scatter Function"

From LNTwww
Line 3: Line 3:
  
 
[[File:P_ID2164__Mob_A_2_5.png|right|frame|Verzögerungs–Doppler–Funktion]]
 
[[File:P_ID2164__Mob_A_2_5.png|right|frame|Verzögerungs–Doppler–Funktion]]
For the mobile radio channel as a time-variant system, there are a total of four system functions that are linked with each other via the Fourier transformation. With the nomenclature formalized in our learning tutorial these:
+
For the mobile radio channel as a time-variant system, there are a total of four system functions that are linked with each other via the Fourier transform. With the nomenclature from our learning tutorial, these are:
* the time-variant impulse response  $h(\tau, \hspace{0.05cm}t)$, which we also refer to here as  $\eta_{\rm VZ}(\tau,\hspace{0.05cm} t)$ ,
+
* the time-variant impulse response  $h(\tau, \hspace{0.05cm}t)$, which we also denote here as  $\eta_{\rm VZ}(\tau,\hspace{0.05cm} t)$ ,
* the delay–Doppler–function  $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$,
+
* the delay-Doppler function  $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$,
* the frequency–Doppler–function  $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$,  
+
* the frequency-Doppler function  $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$,  
* the time variant transfer function  $\eta_{\rm FZ}(f,\hspace{0.05cm}t)$  or  $H(f, \hspace{0.05cm}t)$.
+
* the time-variant transfer function  $\eta_{\rm FZ}(f,\hspace{0.05cm}t)$  or  $H(f, \hspace{0.05cm}t)$.
  
  
The indices represent the <b>V</b>delay&nbsp; $\tau$, the <b>Z</b>time&nbsp; $t$, the <b>F</b>frequency&nbsp; $f$&nbsp; and the <b>D</b>oppler frequency&nbsp; $f_{\rm D}$.
+
The indices represent the delay (<b>V</b>) $\tau$, the time (<b>Z</b>) &nbsp; $t$, the frequency (<b>F</b>)&nbsp; $f$&nbsp; and the Doppler frequency (<b>D</b>)&nbsp; $f_{\rm D}$.
  
Given is the delay&ndash;Doppler&ndash;function&nbsp; $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$&nbsp; according to the upper graphic:
+
The delay&ndash;Doppler function&nbsp; $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$&nbsp; is shown in the top plot:
$$\eta_{\rm VD}(\thaw, f_{\rm D}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2} \cdot \delta (\dew) \cdot \delta (f_{\rm D} - 100\,{\rm Hz})-$$
+
:$$\eta_{\rm VD}(\tau, f_{\rm D}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2}} \cdot \delta (\tau) \cdot \delta (f_{\rm D} - 100\,{\rm Hz})-$$
:$$\hspace{1.75cm} \ - \ \hspace{-0.1cm} \frac{1}{2} \cdot \delta (\dew- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} - 50\,{\rm Hz})-  
+
:$$\hspace{1.75cm} \ - \ \hspace{-0.1cm} \frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} - 50\,{\rm Hz})-  
  \frac{1}{2} \cdot \delta (\dew- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} + 50\,{\rm Hz})  
+
  \frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} + 50\,{\rm Hz})  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
In the literature&nbsp; $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$&nbsp; often also called <i>Scatter&ndash;function</i> and denoted with&nbsp; $s(\tau, \hspace{0.05cm}f_{\rm D})$&nbsp;.
+
In the literature,&nbsp; $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$&nbsp; is often also called <i>scatter function</i> and denoted with&nbsp; $s(\tau, \hspace{0.05cm}f_{\rm D})$&nbsp;.
 
 
In this task, the associated delay&ndash;time&ndash;function&nbsp; $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$&nbsp; and the frequency&ndash;Doppler&ndash;function&nbsp; $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$&nbsp; are to be determined.
 
 
 
 
 
 
 
  
 +
In this task, the associated delay&ndash;time function&nbsp; $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$&nbsp; and the frequency&ndash;Doppler function&nbsp; $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$&nbsp; are to be determined.
  
  
Line 37: Line 33:
 
===Questionnaire===
 
===Questionnaire===
 
<quiz display=simple>
 
<quiz display=simple>
Which&nbsp; $\tau$&ndash;values does the 2D&ndash;impulse response&nbsp; $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$&nbsp; shares? At
+
{At which values of &nbsp; $\tau$ are the components of 2D impulse response&nbsp; $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$&nbsp;?
 +
At
 
|type="[]"}
 
|type="[]"}
 
+ $\tau = 0$,
 
+ $\tau = 0$,
Line 43: Line 40:
 
- other $\tau$&ndash;values.
 
- other $\tau$&ndash;values.
  
{Calculate&nbsp; $|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm}t)|$. Which of the following statements apply?
+
{Calculate&nbsp; $|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm}t)|$. Which of the following statements are true?
 
|type="()"}
 
|type="()"}
 
+ $|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm} t)|$&nbsp; is independent of&nbsp; $t$.
 
+ $|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm} t)|$&nbsp; is independent of&nbsp; $t$.
- The following applies&nbsp; $\eta_{\rm VZ}(\tau = 0, \hspace{0.05cm}t) = A \cdot \cos {(2\pi f_0 t)}$.
+
- &nbsp; $\eta_{\rm VZ}(\tau = 0, \hspace{0.05cm}t) = A \cdot \cos {(2\pi f_0 t)}$.
- It applies&nbsp; $\eta_{\rm VZ}(\tau = 0, \hspace{0.05cm}t) = A \cdot \sin {(2\pi f_0 t)}$.
+
- &nbsp; $\eta_{\rm VZ}(\tau = 0, \hspace{0.05cm}t) = A \cdot \sin {(2\pi f_0 t)}$.
  
{Calculate&nbsp; $|\eta_{\rm VZ}(\dew = 1 \ {\rm &micro; s},\hspace{0.05cm} t)|$. Which of the statements apply?
+
{Calculate&nbsp; $|\eta_{\rm VZ}(\dew = 1 \ {\rm &micro; s},\hspace{0.05cm} t)|$. Which of the following statements are true?
 
|type="()"}
 
|type="()"}
 
- $|\eta_{\rm VZ}(\tau = 1 \ {\rm &micro; s},\hspace{0.05cm} t)|$&nbsp; is independent of&nbsp; $t$.
 
- $|\eta_{\rm VZ}(\tau = 1 \ {\rm &micro; s},\hspace{0.05cm} t)|$&nbsp; is independent of&nbsp; $t$.
+ It applies&nbsp; $\eta_{\rm VZ}(\tau = 1 \ {\rm &micro; s}, \hspace{0.05cm}t) = A \cdot \cos {(2\pi f_0 t)}$.
+
+ &nbsp; $\eta_{\rm VZ}(\tau = 1 \ {\rm &micro; s}, \hspace{0.05cm}t) = A \cdot \cos {(2\pi f_0 t)}$.
- It applies&nbsp; $\eta_{\rm VZ}(\tau = 1 \ {\rm &micro; s}, \hspace{0.05cm}t) = A \cdot \sin {(2\pi f_0 t)}$.
+
- &nbsp; $\eta_{\rm VZ}(\tau = 1 \ {\rm &micro; s}, \hspace{0.05cm}t) = A \cdot \sin {(2\pi f_0 t)}$.
  
{View now the frequency&ndash;Doppler&ndash;display&nbsp; $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$. For which&nbsp; $f_{\rm D}$&ndash;Values is this function not equal to zero? For
+
{Consider now the frequency&ndash;Doppler representation&nbsp; $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$. For which values of &nbsp; $f_{\rm D}$&ndash; is this function <b>not</b> equal to zero?
 +
For
 
|type="[]"}
 
|type="[]"}
 
- $f_{\rm D} = 0$,
 
- $f_{\rm D} = 0$,
Line 61: Line 59:
 
- $f_{\rm D} = &plusmn; 100 \ \rm Hz$.
 
- $f_{\rm D} = &plusmn; 100 \ \rm Hz$.
  
{Which of the following statements apply to&nbsp; $\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D})$?
+
{Which of the following statements are true for&nbsp; $\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D})$?
 
|type="()"}
 
|type="()"}
 
+ $|\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D} = 100 \ \rm Hz)|$&nbsp; is independent of&nbsp; $f_{\rm D}$.
 
+ $|\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D} = 100 \ \rm Hz)|$&nbsp; is independent of&nbsp; $f_{\rm D}$.
- It holds&nbsp; $\eta_{\rm FD}(f, \hspace{0.05cm} f_{\rm D} = 50 \ {\rm Hz}) = A \cdot \cos {(2\pi t_0 f)}$.
+
- &nbsp; $\eta_{\rm FD}(f, \hspace{0.05cm} f_{\rm D} = 50 \ {\rm Hz}) = A \cdot \cos {(2\pi t_0 f)}$.
- It applies&nbsp; $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D} = 50 \ {\rm Hz}) = A \cdot \sin {(2\pi t_0 f)}$.
+
- &nbsp; $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D} = 50 \ {\rm Hz}) = A \cdot \sin {(2\pi t_0 f)}$.
  
{How do you get the time variant transfer function&nbsp; $\eta_{\rm FZ}(f, \hspace{0.05cm}t)$?
+
{How do you get the time-variant transfer function&nbsp; $\eta_{\rm FZ}(f, \hspace{0.05cm}t)$?
 
|type="[]"}
 
|type="[]"}
- By Fourier transformation of&nbsp; $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$&nbsp; regarding&nbsp; $\tau$.
+
- By Fourier transformation of&nbsp; $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$&nbsp; with respect to &nbsp; $\tau$.
+ By Fourier transformation of&nbsp; $\eta_{\rm VZ}(\thaw, \hspace{0.05cm}t)$&nbsp; relative to&nbsp; $\thaw$.
+
+ By Fourier transformation of&nbsp; $\eta_{\rm VZ}(\thaw, \hspace{0.05cm}t)$&nbsp; with respect to&nbsp; $\thaw$.
+ By Fourier inverse transformation of&nbsp; $\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D})$&nbsp; relative to&nbsp; $f_{\rm D}$.
+
+ By Fourier inverse transformation of&nbsp; $\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D})$&nbsp; with respect to&nbsp; $f_{\rm D}$.
 
</quiz>
 
</quiz>
  

Revision as of 16:57, 15 April 2020

Verzögerungs–Doppler–Funktion

For the mobile radio channel as a time-variant system, there are a total of four system functions that are linked with each other via the Fourier transform. With the nomenclature from our learning tutorial, these are:

  • the time-variant impulse response  $h(\tau, \hspace{0.05cm}t)$, which we also denote here as  $\eta_{\rm VZ}(\tau,\hspace{0.05cm} t)$ ,
  • the delay-Doppler function  $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$,
  • the frequency-Doppler function  $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$,
  • the time-variant transfer function  $\eta_{\rm FZ}(f,\hspace{0.05cm}t)$  or  $H(f, \hspace{0.05cm}t)$.


The indices represent the delay (V) $\tau$, the time (Z)   $t$, the frequency (F)  $f$  and the Doppler frequency (D)  $f_{\rm D}$.

The delay–Doppler function  $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$  is shown in the top plot:

$$\eta_{\rm VD}(\tau, f_{\rm D}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2}} \cdot \delta (\tau) \cdot \delta (f_{\rm D} - 100\,{\rm Hz})-$$
$$\hspace{1.75cm} \ - \ \hspace{-0.1cm} \frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} - 50\,{\rm Hz})- \frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} + 50\,{\rm Hz}) \hspace{0.05cm}.$$

In the literature,  $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$  is often also called scatter function and denoted with  $s(\tau, \hspace{0.05cm}f_{\rm D})$ .

In this task, the associated delay–time function  $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$  and the frequency–Doppler function  $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$  are to be determined.


Notes:

  • This task should clarify the subject matter of the chapter  Das GWSSUS–Kanalmodell.
  • The relationship between the individual system functions is given in the  graph on the first page  of this chapter.
  • Note that the magnitude function  $|\eta_{\rm VD}(\tau, \hspace{0.05cm} f_{\rm D})|$  is shown above, so negative weights of the Dirac functions cannot be recognized.


Questionnaire

1

At which values of   $\tau$ are the components of 2D impulse response  $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$ ? At

$\tau = 0$,
$\tau = 1 \ \rm µ s$,
other $\tau$–values.

2

Calculate  $|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm}t)|$. Which of the following statements are true?

$|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm} t)|$  is independent of  $t$.
  $\eta_{\rm VZ}(\tau = 0, \hspace{0.05cm}t) = A \cdot \cos {(2\pi f_0 t)}$.
  $\eta_{\rm VZ}(\tau = 0, \hspace{0.05cm}t) = A \cdot \sin {(2\pi f_0 t)}$.

3

Calculate  $|\eta_{\rm VZ}(\dew = 1 \ {\rm µ s},\hspace{0.05cm} t)|$. Which of the following statements are true?

$|\eta_{\rm VZ}(\tau = 1 \ {\rm µ s},\hspace{0.05cm} t)|$  is independent of  $t$.
  $\eta_{\rm VZ}(\tau = 1 \ {\rm µ s}, \hspace{0.05cm}t) = A \cdot \cos {(2\pi f_0 t)}$.
  $\eta_{\rm VZ}(\tau = 1 \ {\rm µ s}, \hspace{0.05cm}t) = A \cdot \sin {(2\pi f_0 t)}$.

4

Consider now the frequency–Doppler representation  $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$. For which values of   $f_{\rm D}$– is this function not equal to zero?

For

$f_{\rm D} = 0$,
$f_{\rm D} = ± 50 \ \rm Hz$,
$f_{\rm D} = ± 100 \ \rm Hz$.

5

Which of the following statements are true for  $\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D})$?

$|\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D} = 100 \ \rm Hz)|$  is independent of  $f_{\rm D}$.
  $\eta_{\rm FD}(f, \hspace{0.05cm} f_{\rm D} = 50 \ {\rm Hz}) = A \cdot \cos {(2\pi t_0 f)}$.
  $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D} = 50 \ {\rm Hz}) = A \cdot \sin {(2\pi t_0 f)}$.

6

How do you get the time-variant transfer function  $\eta_{\rm FZ}(f, \hspace{0.05cm}t)$?

By Fourier transformation of  $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$  with respect to   $\tau$.
By Fourier transformation of  $\eta_{\rm VZ}(\thaw, \hspace{0.05cm}t)$  with respect to  $\thaw$.
By Fourier inverse transformation of  $\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D})$  with respect to  $f_{\rm D}$.


Sample solution

{

(1)  The time variant impulse response $h(\tau, \hspace{0.05cm} t) = \eta_{\rm VZ}(\tau, \hspace{0. 05cm} t)$ is the Fourier inverse transform of the delay–Doppler–function $\eta_{\rm VD}(\thaw,\hspace{0.05cm} f_{\rm D}) = s(\thaw, \hspace{0.05cm} f_{\rm D})$: $$\eta_{\rm VZ}(\thaw, \hspace{0.05cm} t) \hspace{0.2cm} \stackrel{t, \hspace{0.02cm}f_{\rm D}{\circ}{\circ}!-\!-\!-\!-\!-\!\bullet} \hspace{0.2cm} \eta_{\rm VD}(\thaw, f_{\rm D})\hspace{0.05cm}.$$

  • Accordingly, $\eta_{\rm VZ}(\tau,\hspace{0.05cm} t)$ is identical for all values of $\tau$ $0$, for which no shares can be recognized in the scatter–function $\eta_{\rm VD}(\tau, f_{\rm D})$.
  • The solutions 1 and 2 are therefore correct: Only for $\tau = 0$ and $\tau = 1 \ \ \rm \mu s$ the time variant impulse response has finite values.


(2)  For the delay $\tau = 0$ the scatter–function ($\eta_{\rm VD}$) consists of a single Dirac at $f_{\rm D} = 100 \ \rm Hz$.

  • For the searched time function is valid according to the second Fourier integral:

$$\eta_{\rm VZ}(\tau = 0, t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2} \cdot \int\limits_{-\infty}^{+\infty} \delta (f_{\rm D} - 100\,{\rm Hz}) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} 2 \pi f_{\rm D} t}\hspace{0.15cm}{\rm d}f_{\rm D} =\frac{1}{\sqrt{2}} \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi t \hspace{0.05cm}\cdot \hspace{0.05cm}100\,{\rm Hz}} .$$

  • The correct solution is therefore solution 1.


(3)  For the delay time $\tau = 1 \ \ \rm µ s$ the delay–Doppler–function consists of two Dirac functions at $±50 \ \rm Hz$, each with the weight $-0.5$.

  • The time function thus results in

$$\eta_{\rm VZ}(\tau = 1\,{\rm \mu s}, t) = - \cos( 2 \pi t \cdot 50\,{\rm Hz})\hspace{0.05cm}.$ *This function can be represented with $A = -1$ and $f_0 = 50 \ \rm Hz$ according to <u>solution 2</u>. '''(4)'''  The three Dirac functions $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$ are at the Doppler frequencies $+100 \ \rm Hz$, $+50 \ \rm Hz$ and $-50 \ \rm Hz$. *For all other Doppler frequencies, therefore, $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D}) must also be \equiv 0$. *The <u>solution is therefore correct here the <u>solution 2</u>. '''(5)''''  If one looks at the scatter–function $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$ in the direction of the $\tau$–axis, one recognizes only one Dirac function each at the Doppler frequencies $100 \ \rm Hz$ and $±50 \ \rm Hz$. *Here, depending on $f$, complex exponential oscillations with constant magnitude result in each case (from which it follows that the <u>solution 1</u> is correct): $$|\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D} = 100\,{\rm Hz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{\sqrt{2}} = {\rm const.}$$ $$| \eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D}= \pm 50\,{\rm Hz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.5 = {\rm const.}$$ [[File:P_ID2168__Mob_A_2_5e_new.png|right|frame|interrelation of all system functions]] '''(6)'''  As can be seen from the given [[Mobile_Communications/The_GWSSUS%E2%80%93Channel Model#Generalized_System Functions_Time-Variant_Systems|Graphics]], the <u>solution alternatives 2 and 3</u> are applicable. *The graphic shows all system functions. *The Fourier correspondences (shown in green) illustrate the relationships between these system functions. ''Note:'' Compare the time-variant transfer function $|\eta_{\rm FZ}(f, \hspace{0.05cm} t)|$ in the figure below right with the corresponding graphic for [[Tasks:Task_2.4:_2D-Transfer Function| Task 2.4]]: *The respective amount functions shown differ significantly, although $|\eta_{\rm VZ}(\tau, t)|$ is the same in both cases. *In task 2.4, a cosine was implicitly assumed for $\eta_{\rm VZ}(\tau = 1 \ {\rm µ s}, t)$, here a minus–cosine function. *The (not explicitly) specified delay–Doppler function for task 2.4 was $$\eta_{\rm VD}(\tau, f_{\rm D}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2} \cdot \delta (\dew) \cdot \delta (f_{\rm D} - 100\,{\rm Hz})+$ '"`UNIQ-MathJax40-QINU`"'\hspace{2cm}+\hspace{0.22cm} \frac{1}{2} \cdot \delta (\dew- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} + 50\,{\rm Hz}) \hspace{0.05cm}.$$ *Comparison with the equation on the [[Tasks:2.5_Scatter-Function|Specifications]] shows that only the signs of the Diracs have changed at $\tau = 1 \ \rm µ s$.