Difference between revisions of "Aufgaben:Exercise 2.5: Scatter Function"

From LNTwww
Line 3: Line 3:
  
 
[[File:P_ID2164__Mob_A_2_5.png|right|frame|Verzögerungs–Doppler–Funktion]]
 
[[File:P_ID2164__Mob_A_2_5.png|right|frame|Verzögerungs–Doppler–Funktion]]
Für den Mobilfunkkanal als zeitvariantes System gibt es insgesamt vier Systemfunktionen, die über die Fouriertransformation miteinander verknüpft sind. Mit der in unserem Lerntutorial formalisierten Nomenklatur sind diese:
+
For the mobile radio channel as a time-variant system, there are a total of four system functions that are linked with each other via the Fourier transformation. With the nomenclature formalized in our learning tutorial these:
* die zeitvariante Impulsantwort  $h(\tau, \hspace{0.05cm}t)$, die wir hier auch mit  $\eta_{\rm VZ}(\tau,\hspace{0.05cm} t)$  bezeichnen,
+
* the time-variant impulse response  $h(\tau, \hspace{0.05cm}t)$, which we also refer to here as  $\eta_{\rm VZ}(\tau,\hspace{0.05cm} t)$ ,
* die Verzögerungs–Doppler–Funktion  $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$,
+
* the delay–Doppler–function  $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$,
* die Frequenz–Doppler–Funktion  $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$,  
+
* the frequency–Doppler–function  $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$,  
* die zeitvariante Übertragungsfunktion  $\eta_{\rm FZ}(f,\hspace{0.05cm}t)$  oder  $H(f, \hspace{0.05cm}t)$.
+
* the time variant transfer function  $\eta_{\rm FZ}(f,\hspace{0.05cm}t)$  or  $H(f, \hspace{0.05cm}t)$.
  
  
Die Indizes stehen für die <b>V</b>erzögerung&nbsp; $\tau$, die <b>Z</b>eit&nbsp; $t$, die <b>F</b>requenz&nbsp; $f$&nbsp; sowie die <b>D</b>opplerfrequenz&nbsp; $f_{\rm D}$.
+
The indices represent the <b>V</b>delay&nbsp; $\tau$, the <b>Z</b>time&nbsp; $t$, the <b>F</b>frequency&nbsp; $f$&nbsp; and the <b>D</b>oppler frequency&nbsp; $f_{\rm D}$.
  
Gegeben ist die Verzögerungs&ndash;Doppler&ndash;Funktion&nbsp; $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$&nbsp; entsprechend der oberen Grafik:
+
Given is the delay&ndash;Doppler&ndash;function&nbsp; $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$&nbsp; according to the upper graphic:
:$$\eta_{\rm VD}(\tau, f_{\rm D}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2}} \cdot \delta (\tau) \cdot \delta (f_{\rm D} - 100\,{\rm Hz})-$$
+
$$\eta_{\rm VD}(\thaw, f_{\rm D}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2} \cdot \delta (\dew) \cdot \delta (f_{\rm D} - 100\,{\rm Hz})-$$
:$$\hspace{1.75cm} \ - \ \hspace{-0.1cm} \frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} - 50\,{\rm Hz})-  
+
:$$\hspace{1.75cm} \ - \ \hspace{-0.1cm} \frac{1}{2} \cdot \delta (\dew- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} - 50\,{\rm Hz})-  
  \frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} + 50\,{\rm Hz})  
+
  \frac{1}{2} \cdot \delta (\dew- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} + 50\,{\rm Hz})  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
In der Literatur wird&nbsp; $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$&nbsp; oft auch <i>Scatter&ndash;Funktion</i> genannt und mit&nbsp; $s(\tau, \hspace{0.05cm}f_{\rm D})$&nbsp; bezeichnet.
+
In the literature&nbsp; $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$&nbsp; often also called <i>Scatter&ndash;function</i> and denoted with&nbsp; $s(\tau, \hspace{0.05cm}f_{\rm D})$&nbsp;.
  
In dieser Aufgabe sollen die zugehörige Verzögerungs&ndash;Zeit&ndash;Funktion&nbsp; $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$&nbsp; und die Frequenz&ndash;Doppler&ndash;Funktion&nbsp; $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$&nbsp; ermittelt werden.
+
In this task, the associated delay&ndash;time&ndash;function&nbsp; $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$&nbsp; and the frequency&ndash;Doppler&ndash;function&nbsp; $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$&nbsp; are to be determined.
  
  
Line 28: Line 28:
  
  
''Hinweise:''
+
''Notes:''
* Die Aufgabe soll den Lehrstoff des Kapitels&nbsp; [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell| Das GWSSUS&ndash;Kanalmodell]] verdeutlichen.
+
* This task should clarify the subject matter of the chapter&nbsp; [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell| Das GWSSUS&ndash;Kanalmodell]].
* Der Zusammenhang zwischen den einzelnen Systemfunktionen ist in der&nbsp; [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell#Verallgemeinerte_Systemfunktionen_zeitvarianter_Systeme|Grafik auf der ersten Seite]]&nbsp; dieses Kapitels angegeben.
+
* The relationship between the individual system functions is given in the&nbsp; [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell#Verallgemeinerte_Systemfunktionen_zeitvarianter_Systeme|graph on the first page]]&nbsp; of this chapter.
*Beachten Sie, dass oben die Betragsfunktion&nbsp; $|\eta_{\rm VD}(\tau, \hspace{0.05cm} f_{\rm D})|$&nbsp; dargestellt ist, so dass negative Gewichte der Diracfunktionen nicht zu erkennen sind.  
+
*Note that the magnitude function&nbsp; $|\eta_{\rm VD}(\tau, \hspace{0.05cm} f_{\rm D})|$&nbsp; is shown above, so negative weights of the Dirac functions cannot be recognized.  
  
  
  
===Fragebogen===
+
===Questionnaire===
 
<quiz display=simple>
 
<quiz display=simple>
{Bei welchen&nbsp; $\tau$&ndash;Werten hat die 2D&ndash;Impulsantwort&nbsp; $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$&nbsp; Anteile? Bei
+
Which&nbsp; $\tau$&ndash;values does the 2D&ndash;impulse response&nbsp; $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$&nbsp; shares? At
 
|type="[]"}
 
|type="[]"}
 
+ $\tau = 0$,
 
+ $\tau = 0$,
 
+ $\tau = 1 \ \rm &micro; s$,
 
+ $\tau = 1 \ \rm &micro; s$,
- anderen $\tau$&ndash;Werte.
+
- other $\tau$&ndash;values.
  
{Berechnen Sie&nbsp; $|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm}t)|$. Welche der folgenden Aussagen treffen zu?
+
{Calculate&nbsp; $|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm}t)|$. Which of the following statements apply?
 
|type="()"}
 
|type="()"}
+ $|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm} t)|$&nbsp; ist unabhängig von&nbsp; $t$.
+
+ $|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm} t)|$&nbsp; is independent of&nbsp; $t$.
- Es gilt&nbsp; $\eta_{\rm VZ}(\tau = 0, \hspace{0.05cm}t) = A \cdot \cos {(2\pi f_0 t)}$.
+
- The following applies&nbsp; $\eta_{\rm VZ}(\tau = 0, \hspace{0.05cm}t) = A \cdot \cos {(2\pi f_0 t)}$.
- Es gilt&nbsp; $\eta_{\rm VZ}(\tau = 0, \hspace{0.05cm}t) = A \cdot \sin {(2\pi f_0 t)}$.
+
- It applies&nbsp; $\eta_{\rm VZ}(\tau = 0, \hspace{0.05cm}t) = A \cdot \sin {(2\pi f_0 t)}$.
  
{Berechnen Sie&nbsp; $|\eta_{\rm VZ}(\tau = 1 \ {\rm &micro; s},\hspace{0.05cm} t)|$. Welche der Aussagen treffen zu?
+
{Calculate&nbsp; $|\eta_{\rm VZ}(\dew = 1 \ {\rm &micro; s},\hspace{0.05cm} t)|$. Which of the statements apply?
 
|type="()"}
 
|type="()"}
- $|\eta_{\rm VZ}(\tau = 1 \ {\rm &micro; s},\hspace{0.05cm} t)|$&nbsp; ist unabhängig von&nbsp; $t$.
+
- $|\eta_{\rm VZ}(\tau = 1 \ {\rm &micro; s},\hspace{0.05cm} t)|$&nbsp; is independent of&nbsp; $t$.
+ Es gilt&nbsp; $\eta_{\rm VZ}(\tau = 1 \ {\rm &micro; s}, \hspace{0.05cm}t) = A \cdot \cos {(2\pi f_0 t)}$.
+
+ It applies&nbsp; $\eta_{\rm VZ}(\tau = 1 \ {\rm &micro; s}, \hspace{0.05cm}t) = A \cdot \cos {(2\pi f_0 t)}$.
- Es gilt&nbsp; $\eta_{\rm VZ}(\tau = 1 \ {\rm &micro; s}, \hspace{0.05cm}t) = A \cdot \sin {(2\pi f_0 t)}$.
+
- It applies&nbsp; $\eta_{\rm VZ}(\tau = 1 \ {\rm &micro; s}, \hspace{0.05cm}t) = A \cdot \sin {(2\pi f_0 t)}$.
  
{Betrachten Sie nun die Frequenz&ndash;Doppler&ndash;Darstellung&nbsp; $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$. Für welche&nbsp; $f_{\rm D}$&ndash;Werte ist diese Funktion ungleich Null? Für
+
{View now the frequency&ndash;Doppler&ndash;display&nbsp; $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$. For which&nbsp; $f_{\rm D}$&ndash;Values is this function not equal to zero? For
 
|type="[]"}
 
|type="[]"}
 
- $f_{\rm D} = 0$,
 
- $f_{\rm D} = 0$,
Line 61: Line 61:
 
- $f_{\rm D} = &plusmn; 100 \ \rm Hz$.
 
- $f_{\rm D} = &plusmn; 100 \ \rm Hz$.
  
{Welche der folgenden Aussagen gelten für&nbsp; $\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D})$?
+
{Which of the following statements apply to&nbsp; $\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D})$?
 
|type="()"}
 
|type="()"}
+ $|\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D} = 100 \ \rm Hz)|$&nbsp; ist unabhängig von&nbsp; $f_{\rm D}$.
+
+ $|\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D} = 100 \ \rm Hz)|$&nbsp; is independent of&nbsp; $f_{\rm D}$.
- Es gilt&nbsp; $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D} = 50 \ {\rm Hz}) = A \cdot \cos {(2\pi t_0 f)}$.
+
- It holds&nbsp; $\eta_{\rm FD}(f, \hspace{0.05cm} f_{\rm D} = 50 \ {\rm Hz}) = A \cdot \cos {(2\pi t_0 f)}$.
- Es gilt&nbsp; $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D} = 50 \ {\rm Hz}) = A \cdot \sin {(2\pi t_0 f)}$.
+
- It applies&nbsp; $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D} = 50 \ {\rm Hz}) = A \cdot \sin {(2\pi t_0 f)}$.
  
{Wie kommt man zur zeitvarianten Übertragungsfunktion&nbsp; $\eta_{\rm FZ}(f, \hspace{0.05cm}t)$?
+
{How do you get the time variant transfer function&nbsp; $\eta_{\rm FZ}(f, \hspace{0.05cm}t)$?
 
|type="[]"}
 
|type="[]"}
- Durch Fouriertransformation von&nbsp; $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$&nbsp; bezüglich&nbsp; $\tau$.
+
- By Fourier transformation of&nbsp; $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$&nbsp; regarding&nbsp; $\tau$.
+ Durch Fouriertransformation von&nbsp; $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$&nbsp; bezüglich&nbsp; $\tau$.
+
+ By Fourier transformation of&nbsp; $\eta_{\rm VZ}(\thaw, \hspace{0.05cm}t)$&nbsp; relative to&nbsp; $\thaw$.
+ Durch Fourierrücktransformation von&nbsp; $\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D})$&nbsp; bezüglich&nbsp; $f_{\rm D}$.
+
+ By Fourier inverse transformation of&nbsp; $\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D})$&nbsp; relative to&nbsp; $f_{\rm D}$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Sample solution===
{{ML-Kopf}}
+
{{{ML-Kopf}}
'''(1)'''&nbsp; Die zeitvariante Impulsantwort $h(\tau, \hspace{0.05cm} t) = \eta_{\rm VZ}(\tau, \hspace{0.05cm} t)$ ist die Fourierrücktransformierte der Verzögerungs&ndash;Doppler&ndash;Funktion $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D}) = s(\tau, \hspace{0.05cm} f_{\rm D})$:
+
'''(1)'''&nbsp; The time variant impulse response $h(\tau, \hspace{0.05cm} t) = \eta_{\rm VZ}(\tau, \hspace{0. 05cm} t)$ is the Fourier inverse transform of the delay&ndash;Doppler&ndash;function $\eta_{\rm VD}(\thaw,\hspace{0.05cm} f_{\rm D}) = s(\thaw, \hspace{0.05cm} f_{\rm D})$:
:$$\eta_{\rm VZ}(\tau, \hspace{0.05cm} t)
+
$$\eta_{\rm VZ}(\thaw, \hspace{0.05cm} t)
  \hspace{0.2cm}  \stackrel{t, \hspace{0.02cm}f_{\rm D}}{\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.2cm} \eta_{\rm VD}(\tau, f_{\rm D})\hspace{0.05cm}.$$
+
  \hspace{0.2cm}  \stackrel{t, \hspace{0.02cm}f_{\rm D}{\circ}{\circ}!-\!-\!-\!-\!-\!\bullet} \hspace{0.2cm} \eta_{\rm VD}(\thaw, f_{\rm D})\hspace{0.05cm}.$$
  
*Dementsprechend ist $\eta_{\rm VZ}(\tau,\hspace{0.05cm} t)$ für alle Werte von $\tau$ identisch $0$, für die auch in der Scatter&ndash;Funktion $\eta_{\rm VD}(\tau, f_{\rm D})$ keine Anteile zu erkennen sind.  
+
*Accordingly, $\eta_{\rm VZ}(\tau,\hspace{0.05cm} t)$ is identical for all values of $\tau$ $0$, for which no shares can be recognized in the scatter&ndash;function $\eta_{\rm VD}(\tau, f_{\rm D})$.  
*Richtig sind also die <u>Lösungsvorschläge 1 und 2</u>: Nur für $\tau = 0$ und $\tau = 1 \ \rm \mu s$ besitzt die zeitvariante Impulsantwort endliche Werte.
+
*The <u>solutions 1 and 2</u> are therefore correct: Only for $\tau = 0$ and $\tau = 1 \ \ \rm \mu s$ the time variant impulse response has finite values.
  
  
  
'''(2)'''&nbsp; Für die Verzögerung $\tau = 0$ besteht die Scatter&ndash;Funktion ($\eta_{\rm VD}$) aus einem einzigen Dirac bei $f_{\rm D} = 100 \ \rm Hz$.  
+
'''(2)'''&nbsp; For the delay $\tau = 0$ the scatter&ndash;function ($\eta_{\rm VD}$) consists of a single Dirac at $f_{\rm D} = 100 \ \rm Hz$.  
*Für die gesuchte Zeitfunktion gilt gemäß dem zweiten Fourierintegral:
+
*For the searched time function is valid according to the second Fourier integral:
:$$\eta_{\rm VZ}(\tau = 0, t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2}} \cdot \int\limits_{-\infty}^{+\infty} \delta (f_{\rm D} - 100\,{\rm Hz}) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} 2 \pi f_{\rm D} t}\hspace{0.15cm}{\rm d}f_{\rm D} =\frac{1}{\sqrt{2}} \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi t \hspace{0.05cm}\cdot \hspace{0.05cm}100\,{\rm Hz}} .$$
+
$$\eta_{\rm VZ}(\tau = 0, t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2} \cdot \int\limits_{-\infty}^{+\infty} \delta (f_{\rm D} - 100\,{\rm Hz}) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} 2 \pi f_{\rm D} t}\hspace{0.15cm}{\rm d}f_{\rm D} =\frac{1}{\sqrt{2}} \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi t \hspace{0.05cm}\cdot \hspace{0.05cm}100\,{\rm Hz}} .$$
  
*Richtig ist demzufolge der <u>Lösungsvorschlag 1</u>.
+
*The correct solution is therefore <u>solution 1</u>.
  
  
  
'''(3)'''&nbsp; Bei der Verzögerungszeit $\tau = 1 \ \rm &micro; s$ besteht die Verzögerungs&ndash;Doppler&ndash;Funktion dagegen aus zwei Diracfunktionen bei $&plusmn;50 \ \rm Hz$, jeweils mit dem Gewicht $-0.5$.  
+
'''(3)'''&nbsp; For the delay time $\tau = 1 \ \ \rm &micro; s$ the delay&ndash;Doppler&ndash;function consists of two Dirac functions at $&plusmn;50 \ \rm Hz$, each with the weight $-0.5$.  
*Die Zeitfunktion ergibt sich damit zu
+
*The time function thus results in
:$$\eta_{\rm VZ}(\tau = 1\,{\rm \mu s}, t) = - \cos( 2 \pi t \cdot 50\,{\rm Hz})\hspace{0.05cm}.$$
+
$$\eta_{\rm VZ}(\tau = 1\,{\rm \mu s}, t) = - \cos( 2 \pi t \cdot 50\,{\rm Hz})\hspace{0.05cm}.$
  
*Diese Funktion lässt sich mit $A = -1$ und $f_0 = 50 \ \rm Hz$ gemäß <u>Lösungsvorschlag 2</u> darstellen.
+
*This function can be represented with $A = -1$ and $f_0 = 50 \ \rm Hz$ according to <u>solution 2</u>.
  
  
  
'''(4)'''&nbsp; Die drei Diracfunktionen $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$ liegen bei den Dopplerfrequenzen $+100 \ \rm Hz$, $+50 \ \rm Hz$ und $-50 \ \rm Hz$.  
+
'''(4)'''&nbsp; The three Dirac functions $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$ are at the Doppler frequencies $+100 \ \rm Hz$, $+50 \ \rm Hz$ and $-50 \ \rm Hz$.  
*Für alle anderen Dopplerfrequenzen muss deshalb auch $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D}) \equiv 0$ sein.  
+
*For all other Doppler frequencies, therefore, $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D}) must also be \equiv 0$.  
*Richtig ist hier also der <u>Lösungsvorschlag 2</u>.
+
*The <u>solution is therefore correct here the <u>solution 2</u>.
  
  
  
'''(5)'''&nbsp; Betrachtet man die Scatter&ndash;Funktion $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$ in Richtung der $\tau$&ndash;Achse, so erkennt man bei den Dopplerfrequenzen $100 \ \rm Hz$ und $&plusmn;50 \ \rm Hz$ nur jeweils eine Diracfunktion.  
+
'''(5)''''&nbsp; If one looks at the scatter&ndash;function $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$ in the direction of the $\tau$&ndash;axis, one recognizes only one Dirac function each at the Doppler frequencies $100 \ \rm Hz$ and $&plusmn;50 \ \rm Hz$.  
*Hier ergeben sich in Abhängigkeit von $f$ jeweils komplexe Exponentialschwingungen mit konstantem Betrag (woraus folgt, dass der <u>Lösungsvorschlag 1</u> richtig ist):
+
*Here, depending on $f$, complex exponential oscillations with constant magnitude result in each case (from which it follows that the <u>solution 1</u> is correct):
:$$|\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D} = 100\,{\rm Hz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{\sqrt{2}} = {\rm const.}$$
+
$$|\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D} = 100\,{\rm Hz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{\sqrt{2}} = {\rm const.}$$
:$$| \eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D}= \pm 50\,{\rm Hz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.5 = {\rm const.}$$
+
$$| \eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D}= \pm 50\,{\rm Hz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.5 = {\rm const.}$$
  
  
  
[[File:P_ID2168__Mob_A_2_5e_neu.png|right|frame|Zusammenhang aller Systemfunktionen]]
+
[[File:P_ID2168__Mob_A_2_5e_new.png|right|frame|interrelation of all system functions]]
'''(6)'''&nbsp; Wie aus der angegebenen [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell#Verallgemeinerte_Systemfunktionen_zeitvarianter_Systeme|Grafik]] zu ersehen, treffen die <u>Lösungsalternativen 2 und 3</u> zu.
+
'''(6)'''&nbsp; As can be seen from the given [[Mobile_Communications/The_GWSSUS%E2%80%93Channel Model#Generalized_System Functions_Time-Variant_Systems|Graphics]], the <u>solution alternatives 2 and 3</u> are applicable.
  
*Die Grafik zeigt alle Systemfunktionen.  
+
*The graphic shows all system functions.  
*Die Fourierkorrespondenzen (grün eingezeichnet) verdeutlichen die Zusammenhänge zwischen diesen Systemfunktionen.
+
*The Fourier correspondences (shown in green) illustrate the relationships between these system functions.
  
  
  
''Hinweis:''  
+
''Note:''  
  
Vergleichen Sie die zeitvariante Übertragungsfunktion $|\eta_{\rm FZ}(f, \hspace{0.05cm} t)|$ im Bild unten rechts mit der entsprechenden Grafik für  [[Aufgaben:Aufgabe_2.4:_2D-Übertragungsfunktion| Aufgabe 2.4]]:  
+
Compare the time-variant transfer function $|\eta_{\rm FZ}(f, \hspace{0.05cm} t)|$ in the figure below right with the corresponding graphic for [[Tasks:Task_2.4:_2D-Transfer Function| Task 2.4]]:  
*Die jeweils dargestellten Betragsfunktionen unterscheiden sich signifikant, obwohl $|\eta_{\rm VZ}(\tau, t)|$ in beiden Fällen gleich ist.  
+
*The respective amount functions shown differ significantly, although $|\eta_{\rm VZ}(\tau, t)|$ is the same in both cases.  
*In der Aufgabe 2.4 wurde für $\eta_{\rm VZ}(\tau = 1 \ {\rm &micro; s}, t)$ implizit ein Cosinus vorausgesetzt, hier eine Minus&ndash;Cosinusfunktion.  
+
*In task 2.4, a cosine was implicitly assumed for $\eta_{\rm VZ}(\tau = 1 \ {\rm &micro; s}, t)$, here a minus&ndash;cosine function.  
*Die (nicht explizit) angegebene Verzögerungs&ndash;Dopplerfunktion für die Aufgabe 2.4 lautete:
+
*The (not explicitly) specified delay&ndash;Doppler function for task 2.4 was
:$$\eta_{\rm VD}(\tau, f_{\rm D}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2}} \cdot \delta (\tau) \cdot \delta (f_{\rm D} - 100\,{\rm Hz})+$$
+
$$\eta_{\rm VD}(\tau, f_{\rm D}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2} \cdot \delta (\dew) \cdot \delta (f_{\rm D} - 100\,{\rm Hz})+$
:$$\hspace{2cm}+\hspace{0.22cm}\frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} - 50\,{\rm Hz})+ $$
+
$$\hspace{2cm}+\hspace{0.22cm}\frac{1}{2} \cdot \delta (\dew- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} - 50\,{\rm Hz})+ $
:$$\hspace{2cm}+\hspace{0.22cm} \frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} + 50\,{\rm Hz})  
+
$$\hspace{2cm}+\hspace{0.22cm} \frac{1}{2} \cdot \delta (\dew- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} + 50\,{\rm Hz})  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Ein Vergleich mit der Gleichung auf der [[Aufgaben:2.5_Scatter-Funktion|Angabenseite]] zeigt, dass sich nur die Vorzeichen der Diracs bei $\tau = 1 \ \rm &micro; s$ geändert haben.
+
*Comparison with the equation on the [[Tasks:2.5_Scatter-Function|Specifications]] shows that only the signs of the Diracs have changed at $\tau = 1 \ \rm &micro; s$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 16:48, 15 April 2020

Verzögerungs–Doppler–Funktion

For the mobile radio channel as a time-variant system, there are a total of four system functions that are linked with each other via the Fourier transformation. With the nomenclature formalized in our learning tutorial these:

  • the time-variant impulse response  $h(\tau, \hspace{0.05cm}t)$, which we also refer to here as  $\eta_{\rm VZ}(\tau,\hspace{0.05cm} t)$ ,
  • the delay–Doppler–function  $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$,
  • the frequency–Doppler–function  $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$,
  • the time variant transfer function  $\eta_{\rm FZ}(f,\hspace{0.05cm}t)$  or  $H(f, \hspace{0.05cm}t)$.


The indices represent the Vdelay  $\tau$, the Ztime  $t$, the Ffrequency  $f$  and the Doppler frequency  $f_{\rm D}$.

Given is the delay–Doppler–function  $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$  according to the upper graphic: $$\eta_{\rm VD}(\thaw, f_{\rm D}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2} \cdot \delta (\dew) \cdot \delta (f_{\rm D} - 100\,{\rm Hz})-$$

$$\hspace{1.75cm} \ - \ \hspace{-0.1cm} \frac{1}{2} \cdot \delta (\dew- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} - 50\,{\rm Hz})- \frac{1}{2} \cdot \delta (\dew- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} + 50\,{\rm Hz}) \hspace{0.05cm}.$$

In the literature  $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$  often also called Scatter–function and denoted with  $s(\tau, \hspace{0.05cm}f_{\rm D})$ .

In this task, the associated delay–time–function  $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$  and the frequency–Doppler–function  $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$  are to be determined.




Notes:

  • This task should clarify the subject matter of the chapter  Das GWSSUS–Kanalmodell.
  • The relationship between the individual system functions is given in the  graph on the first page  of this chapter.
  • Note that the magnitude function  $|\eta_{\rm VD}(\tau, \hspace{0.05cm} f_{\rm D})|$  is shown above, so negative weights of the Dirac functions cannot be recognized.


Questionnaire

1

Which  $\tau$–values does the 2D–impulse response  $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$  shares? At

$\tau = 0$,
$\tau = 1 \ \rm µ s$,
other $\tau$–values.

2

Calculate  $|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm}t)|$. Which of the following statements apply?

$|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm} t)|$  is independent of  $t$.
The following applies  $\eta_{\rm VZ}(\tau = 0, \hspace{0.05cm}t) = A \cdot \cos {(2\pi f_0 t)}$.
It applies  $\eta_{\rm VZ}(\tau = 0, \hspace{0.05cm}t) = A \cdot \sin {(2\pi f_0 t)}$.

3

Calculate  $|\eta_{\rm VZ}(\dew = 1 \ {\rm µ s},\hspace{0.05cm} t)|$. Which of the statements apply?

$|\eta_{\rm VZ}(\tau = 1 \ {\rm µ s},\hspace{0.05cm} t)|$  is independent of  $t$.
It applies  $\eta_{\rm VZ}(\tau = 1 \ {\rm µ s}, \hspace{0.05cm}t) = A \cdot \cos {(2\pi f_0 t)}$.
It applies  $\eta_{\rm VZ}(\tau = 1 \ {\rm µ s}, \hspace{0.05cm}t) = A \cdot \sin {(2\pi f_0 t)}$.

4

View now the frequency–Doppler–display  $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$. For which  $f_{\rm D}$–Values is this function not equal to zero? For

$f_{\rm D} = 0$,
$f_{\rm D} = ± 50 \ \rm Hz$,
$f_{\rm D} = ± 100 \ \rm Hz$.

5

Which of the following statements apply to  $\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D})$?

$|\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D} = 100 \ \rm Hz)|$  is independent of  $f_{\rm D}$.
It holds  $\eta_{\rm FD}(f, \hspace{0.05cm} f_{\rm D} = 50 \ {\rm Hz}) = A \cdot \cos {(2\pi t_0 f)}$.
It applies  $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D} = 50 \ {\rm Hz}) = A \cdot \sin {(2\pi t_0 f)}$.

6

How do you get the time variant transfer function  $\eta_{\rm FZ}(f, \hspace{0.05cm}t)$?

By Fourier transformation of  $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$  regarding  $\tau$.
By Fourier transformation of  $\eta_{\rm VZ}(\thaw, \hspace{0.05cm}t)$  relative to  $\thaw$.
By Fourier inverse transformation of  $\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D})$  relative to  $f_{\rm D}$.


Sample solution

{

(1)  The time variant impulse response $h(\tau, \hspace{0.05cm} t) = \eta_{\rm VZ}(\tau, \hspace{0. 05cm} t)$ is the Fourier inverse transform of the delay–Doppler–function $\eta_{\rm VD}(\thaw,\hspace{0.05cm} f_{\rm D}) = s(\thaw, \hspace{0.05cm} f_{\rm D})$: $$\eta_{\rm VZ}(\thaw, \hspace{0.05cm} t) \hspace{0.2cm} \stackrel{t, \hspace{0.02cm}f_{\rm D}{\circ}{\circ}!-\!-\!-\!-\!-\!\bullet} \hspace{0.2cm} \eta_{\rm VD}(\thaw, f_{\rm D})\hspace{0.05cm}.$$

  • Accordingly, $\eta_{\rm VZ}(\tau,\hspace{0.05cm} t)$ is identical for all values of $\tau$ $0$, for which no shares can be recognized in the scatter–function $\eta_{\rm VD}(\tau, f_{\rm D})$.
  • The solutions 1 and 2 are therefore correct: Only for $\tau = 0$ and $\tau = 1 \ \ \rm \mu s$ the time variant impulse response has finite values.


(2)  For the delay $\tau = 0$ the scatter–function ($\eta_{\rm VD}$) consists of a single Dirac at $f_{\rm D} = 100 \ \rm Hz$.

  • For the searched time function is valid according to the second Fourier integral:

$$\eta_{\rm VZ}(\tau = 0, t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2} \cdot \int\limits_{-\infty}^{+\infty} \delta (f_{\rm D} - 100\,{\rm Hz}) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} 2 \pi f_{\rm D} t}\hspace{0.15cm}{\rm d}f_{\rm D} =\frac{1}{\sqrt{2}} \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi t \hspace{0.05cm}\cdot \hspace{0.05cm}100\,{\rm Hz}} .$$

  • The correct solution is therefore solution 1.


(3)  For the delay time $\tau = 1 \ \ \rm µ s$ the delay–Doppler–function consists of two Dirac functions at $±50 \ \rm Hz$, each with the weight $-0.5$.

  • The time function thus results in

$$\eta_{\rm VZ}(\tau = 1\,{\rm \mu s}, t) = - \cos( 2 \pi t \cdot 50\,{\rm Hz})\hspace{0.05cm}.$ *This function can be represented with $A = -1$ and $f_0 = 50 \ \rm Hz$ according to <u>solution 2</u>. '''(4)'''  The three Dirac functions $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$ are at the Doppler frequencies $+100 \ \rm Hz$, $+50 \ \rm Hz$ and $-50 \ \rm Hz$. *For all other Doppler frequencies, therefore, $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D}) must also be \equiv 0$. *The <u>solution is therefore correct here the <u>solution 2</u>. '''(5)''''  If one looks at the scatter–function $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$ in the direction of the $\tau$–axis, one recognizes only one Dirac function each at the Doppler frequencies $100 \ \rm Hz$ and $±50 \ \rm Hz$. *Here, depending on $f$, complex exponential oscillations with constant magnitude result in each case (from which it follows that the <u>solution 1</u> is correct): $$|\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D} = 100\,{\rm Hz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{\sqrt{2}} = {\rm const.}$$ $$| \eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D}= \pm 50\,{\rm Hz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.5 = {\rm const.}$$ [[File:P_ID2168__Mob_A_2_5e_new.png|right|frame|interrelation of all system functions]] '''(6)'''  As can be seen from the given [[Mobile_Communications/The_GWSSUS%E2%80%93Channel Model#Generalized_System Functions_Time-Variant_Systems|Graphics]], the <u>solution alternatives 2 and 3</u> are applicable. *The graphic shows all system functions. *The Fourier correspondences (shown in green) illustrate the relationships between these system functions. ''Note:'' Compare the time-variant transfer function $|\eta_{\rm FZ}(f, \hspace{0.05cm} t)|$ in the figure below right with the corresponding graphic for [[Tasks:Task_2.4:_2D-Transfer Function| Task 2.4]]: *The respective amount functions shown differ significantly, although $|\eta_{\rm VZ}(\tau, t)|$ is the same in both cases. *In task 2.4, a cosine was implicitly assumed for $\eta_{\rm VZ}(\tau = 1 \ {\rm µ s}, t)$, here a minus–cosine function. *The (not explicitly) specified delay–Doppler function for task 2.4 was $$\eta_{\rm VD}(\tau, f_{\rm D}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2} \cdot \delta (\dew) \cdot \delta (f_{\rm D} - 100\,{\rm Hz})+$ '"`UNIQ-MathJax40-QINU`"'\hspace{2cm}+\hspace{0.22cm} \frac{1}{2} \cdot \delta (\dew- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} + 50\,{\rm Hz}) \hspace{0.05cm}.$$ *Comparison with the equation on the [[Tasks:2.5_Scatter-Function|Specifications]] shows that only the signs of the Diracs have changed at $\tau = 1 \ \rm µ s$.