Difference between revisions of "Aufgaben:Exercise 2.5: Three Variants of GF(2 power 4)"

From LNTwww
 
(26 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Erweiterungskörper}}
+
{{quiz-Header|Buchseite=Channel_Coding/Extension_Field}}
  
[[File:P_ID2508__KC_A_2_5.png|right|frame|Potenzen zweier Erweiterungskörper über $\rm GF(2^4)$ – nicht ganz vollständig]]
+
[[File:EN_KC_A_2_5.png|right|frame|Powers of two different extension fields over $\rm GF(2^4)$ - a not quite complete list]]
Irreduzible und primitive Polynome haben große Bedeutung für die Beschreibung von Verfahren zur Fehlerkorrektur. In [[LN97]] findet man zum Beispiel die folgenden irreduziblen Polynome vom Grad $m = 4$:
+
Irreducible and primitive polynomials have great importance in the description of error correction methods.  For example,  in  '''[LN97]'''  one finds the following irreducible polynomials of degree  $m = 4$:
* $p(x) = x^4 + x +1$,
+
* $p_1(x) = x^4 + x +1$,
* $p(x) = x^4 + x^3 + 1$,
 
* $p(x) = x^4 + x^3 + x^2 + x + 1$.
 
  
 +
* $p_2(x) = x^4 + x^3 + 1$,
  
Die beiden ersten Polynome sind auch primitiv. Dies erkennt man aus den Potenztabellen, die rechts angegeben sind – die untere Tabelle (B) allerdings nicht ganz vollständig. Aus beiden Tabellen erkennt man, dass alle Potenzen $\alpha^i$ für $1 ≤ i ≤ 14$ in der Polynomdarstellung ungleich $1$ sind. Erst für $i = 15$ ergibt sich
+
* $p_3(x) = x^4 + x^3 + x^2 + x + 1$.
:$$\alpha^{15} = \alpha^{0} = 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}{\rm Koeffizientenvektor\hspace{0.15cm} 0001}
 
\hspace{0.05cm}.$$
 
  
Nicht angegeben wird, ob sich die rot hinterlegte Tabelle (A) aus dem Polynom $x^4 + x + 1$ oder aus $x^4 + x^3 + 1$ ergibt. Diese Zuordnungen sollen Sie in den Teilaufgaben (1) und (2) treffen. In der Teilaufgabe (3) sollen Sie zudem die fehlenden Potenzen $\alpha^5, \ \alpha^6, \ \alpha^7$ und $\alpha^8$ in der Tabelle (B) ergänzen.
 
  
Die Teilaufgabe (4) bezieht sich auf das ebenfalls irreduzible Polynom $p(x) = x^4 + x^3 + x^2 + x +1$. Entsprechend den oben genannten Kriterien sollen Sie entscheiden, ob dieses Polynom primitiv ist oder nicht.
+
The first two polynomials are also primitive.  This can be seen from the power tables given on the right – the lower table  $\rm (B)$  however not quite complete.
 +
 +
*From both tables we see that all powers  $\alpha^i$  for   $1 ≤ i ≤ 14$   are unequal  $1$  in the polynomial representation.  Only for  $i = 15$   it follows that
 +
:$$\alpha^{15} = \alpha^{0} = 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}{\rm Coefficient\hspace{0.15cm}vector\hspace{0.15cm} 0001}\hspace{0.05cm} .$$
 +
*It is not specified whether the tables  $\rm (A)$  and  $\rm (B)$  result from the polynomial   $p_1(x) = x^4 + x + 1$   or from   $p_2(x) =x^4 + x^3 + 1$.   You are to make these assignments in subtasks  '''(1)'''  and  '''(2)'''.
 +
 +
*In the subtask  '''(3)'''  you are also to complete the missing powers  $\alpha^5, \ \alpha^6, \ \alpha^7$  and  $\alpha^8$  in the table  $\rm (B)$.
  
''Hinweis:''
+
*The subtask  '''(4)'''  refers to the also irreducible polynomial   $p_3(x) = x^4 + x^3 + x^2 + x +1$.  According to the above criteria,  you are to decide whether this polynomial is primitive.
* Die Aufgabe gehört ebenfalls zum Themengebiet des Kapitels [[Kanalcodierung/Erweiterungsk%C3%B6rper|Erweiterungskörper]].
 
  
  
  
 +
Hints:
 +
*The exercise belongs to the chapter  [[Channel_Coding/Extension_Field|"Extension Field"]].
  
 +
*The literature citation  '''[LN97]'''  refers to the book  "Lidl, R.; Niederreiter, H.:  Finite Fields.  Encyclopedia of Mathematics and its Application. 2nd ed. Cambridge: University Press, 1997."
  
  
===Fragebogen===
+
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welches Polynom liegt der Tabelle (A) zugrunde?
+
{Which polynomial underlies the table &nbsp;$\rm (A)$&nbsp;?
 
|type="()"}
 
|type="()"}
+ $p(x) = x^4 + x + 1$,
+
+ $p_1(x) = x^4 + x + 1$,
- $p(x) = x^4 + x^3 + 1$.
+
- $p_2(x) = x^4 + x^3 + 1$.
  
{Welches Polynom liegt der Tabelle (B) zugrunde?
+
{Which polynomial underlies the table &nbsp;$\rm (B)$&nbsp;?
 
|type="()"}
 
|type="()"}
- $p(x) = x^4 + x + 1$,
+
- $p_1(x) = x^4 + x + 1$,
+ $p(x) = x^4 + x^3 + 1$.
+
+ $p_2(x) = x^4 + x^3 + 1$.
  
{Berechnen Sie die in der Tabelle (B) fehlenden Einträge. Welche der folgenden Angaben sind richtig?
+
{Complete the entries missing in the table &nbsp;$\rm (B)$.&nbsp; Which of the following entries are correct?
 
|type="[]"}
 
|type="[]"}
+ $\alpha^5 = \alpha^3 + \alpha + 1 \ \Rightarrow \ \rm Koeffizientenvektor &bdquo;1011&rdquo;$,
+
+ $\alpha^5 = \alpha^3 + \alpha + 1$ &nbsp; &rArr; &nbsp; Coefficient vector&nbsp; "$1011$",
- $\alpha^6 = \alpha^2 + 1 \ \Rightarrow \ \rm Koeffizientenvektor &bdquo;0111&rdquo;$,
+
- $\alpha^6 = \alpha^2 + 1$ &nbsp; &rArr; &nbsp; Coefficient vector&nbsp; "$0111$",
- $\alpha^7 = \alpha^3 + \alpha^2 + \alpha + 1 \ \Rightarrow \ \rm Koeffizientenvektor &bdquo;1111&rdquo;$,
+
- $\alpha^7 = \alpha^3 + \alpha^2 + \alpha + 1$ &nbsp; &rArr; &nbsp; Coefficient vector&nbsp; "$1111$"
+ $\alpha^8 = \alpha^3 + \alpha^2 + \alpha \ \Rightarrow \ \rm &bdquo;1110&rdquo;$.
+
+ $\alpha^8 = \alpha^3 + \alpha^2 + \alpha$ &nbsp; &rArr; &nbsp; Coefficient vector&nbsp; "$1110$".
  
{Ist $p(x) = x^4 + x^3 + x^2 + x + 1$ ein primitives Polynom? Klären Sie diese Frage anhand der Potenzen $\alpha^i$ ($i$ soweit erforderlich).
+
{Is the polynomial &nbsp; $p_3(x) = x^4 + x^3 + x^2 + x + 1$ &nbsp; primitive?&nbsp; Clarify this question using the powers&nbsp; $\alpha^i$&nbsp; $(i$&nbsp; where necessary$)$.
 
|type="()"}
 
|type="()"}
- Ja.
+
- Yes.
+ Nein.
+
+ No.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; From the upper power table &nbsp;$\rm (A)$&nbsp; on the data page one recognizes among other things the property
'''(2)'''&nbsp;  
+
:$$\alpha^{4} = \alpha + 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}\alpha^{4} + \alpha + 1 = 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}
'''(3)'''&nbsp;  
+
p(x) = x^4 + x +1 =p_1(x)\hspace{0.05cm}.$$
'''(4)'''&nbsp;  
+
 
'''(5)'''&nbsp;  
+
Thus,&nbsp; the <u>proposed solution 1</u>&nbsp; is correct.
 +
 
 +
 
 +
'''(2)'''&nbsp; Following the same procedure,&nbsp; it can be shown that the power table &nbsp;$\rm (B)$&nbsp; is based on the polynomial&nbsp; $p_2(x) = x^4 + x^3 + 1$ &nbsp; &#8658; &nbsp; <u>Proposed solution 2</u>.
 +
 
 +
 
 +
'''(3)'''&nbsp; Starting from polynomial&nbsp; $p_2(x) = x^4 + x^3 + 1$&nbsp; one obtains from the determining equation&nbsp; $p(\alpha) = 0$&nbsp; the result&nbsp; $\alpha^4 = \alpha^3 + 1$. This further yields:
 +
:$$\alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^4 = \alpha \cdot (\alpha^3 + 1) = \alpha^4 + \alpha = \alpha^3 + \alpha +1\hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm vector\hspace{0.15cm} 1011},$$
 +
:$$\alpha^6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^5 = \alpha \cdot (\alpha^3 +\alpha + 1) = \alpha^4 + \alpha^2 + \alpha= \alpha^3 +\alpha^2  + \alpha + 1\hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm vector\hspace{0.15cm} 1111},$$
 +
:$$\alpha^7 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^6 = \alpha^4 +\alpha^3 +\alpha^2 +\alpha =  \alpha^2  + \alpha + 1\hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm vector\hspace{0.15cm} 0111},$$
 +
:$$\alpha^8 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^7 = \alpha \cdot (\alpha^2  + \alpha + 1) = \alpha^3 +\alpha^2 +\alpha \hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm vector\hspace{0.15cm} 1110}.$$
 +
 
 +
*Thus,&nbsp; only the&nbsp; <u>proposed solutions 1 and 4</u>&nbsp; are correct.&nbsp; The other two statements are interchanged.
 +
 +
*The following are the complete power tables for&nbsp; $p_1(x) = x^4 + x + 1$&nbsp; (left,&nbsp; red background) and for&nbsp; $p_2(x) = x^4 + x^3 + 1$&nbsp; (right,&nbsp; blue background).
 +
 
 +
[[File:P_ID2512__KC_A_2_5d_neu.png|right|frame|Complete power tables over&nbsp; $\rm GF(2^4)$&nbsp; for two different polynomials <br>$($Sorry,&nbsp; we used here the German terms$)$]]
 +
 
 +
 
 +
 
 +
'''(4)''' The polynomials&nbsp; $p_1(x) = x^4 + x + 1$&nbsp; and&nbsp; $p_2(x) = x^4 + x^3 + 1$&nbsp; are primitive.
 +
*This can be seen from the fact that&nbsp; $\alpha^i \ne 1$&nbsp; for&nbsp; $0 < i < 14$&nbsp; in each case.
 +
 +
*In contrast,&nbsp; $\alpha^{15} = \alpha^0 = 1$ holds.&nbsp; In both cases,&nbsp; the Galois field can be expressed as follows:
 +
:$${\rm GF}(2^4) = \{\hspace{0.1cm}0\hspace{0.05cm},\hspace{0.1cm} \alpha^{0}  = 1,\hspace{0.05cm}\hspace{0.1cm}
 +
\alpha\hspace{0.05cm},\hspace{0.1cm} \alpha^{2},\hspace{0.1cm}  ... \hspace{0.1cm}  , \hspace{0.1cm}\alpha^{14}\hspace{0.1cm}\}\hspace{0.05cm}. $$
 +
 
 +
&rArr; &nbsp; For the polynomial&nbsp; $p_3(x) = x^4 + x^3 + x^2 + x +1$&nbsp; we get:
 +
:$$\alpha^4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^3 + \alpha^2 + \alpha  +1\hspace{0.25cm} \Rightarrow\hspace{0.25cm}{\rm vector\hspace{0.15cm} 1111}\hspace{0.05cm},$$
 +
:$$\alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^4 = \alpha^4 + \alpha^3 + \alpha^2 + \alpha  = $$
 +
::$$= (\alpha^3 + \alpha^2 + \alpha  +1) + \alpha^3 + \alpha^2 + \alpha  = 1 \hspace{0.25cm} \Rightarrow\hspace{0.25cm}{\rm vector\hspace{0.15cm} 0001}\hspace{0.05cm}.$$
 +
*So here is already&nbsp; $\alpha^5 = \alpha^0 = 1 $ <br>$\Rightarrow \ p_3(x)$ is not a primitive polynomial &nbsp; &#8658; &nbsp; <u>Proposed solution 2</u>.
 +
 +
*For the other powers of this polynomial holds:
 +
:$$\alpha^6 = \alpha^{11} = \alpha\hspace{0.05cm},\hspace{0.2cm} 
 +
\alpha^7 = \alpha^{12} = \alpha^2\hspace{0.05cm},\hspace{0.2cm}
 +
\alpha^8 = \alpha^{13} = \alpha^3\hspace{0.05cm},$$
 +
:$$\alpha^9 = \alpha^{14} = \alpha^4\hspace{0.05cm},\hspace{0.2cm}
 +
\alpha^{10} = \alpha^{15} = \alpha^0 = 1\hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^2.2 Erweiterungskörper^]]
+
[[Category:Channel Coding: Exercises|^2.2 Extension Field^]]

Latest revision as of 19:10, 3 October 2022

Powers of two different extension fields over $\rm GF(2^4)$ - a not quite complete list

Irreducible and primitive polynomials have great importance in the description of error correction methods.  For example,  in  [LN97]  one finds the following irreducible polynomials of degree  $m = 4$:

  • $p_1(x) = x^4 + x +1$,
  • $p_2(x) = x^4 + x^3 + 1$,
  • $p_3(x) = x^4 + x^3 + x^2 + x + 1$.


The first two polynomials are also primitive.  This can be seen from the power tables given on the right – the lower table  $\rm (B)$  however not quite complete.

  • From both tables we see that all powers  $\alpha^i$  for   $1 ≤ i ≤ 14$   are unequal  $1$  in the polynomial representation.  Only for  $i = 15$  it follows that
$$\alpha^{15} = \alpha^{0} = 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}{\rm Coefficient\hspace{0.15cm}vector\hspace{0.15cm} 0001}\hspace{0.05cm} .$$
  • It is not specified whether the tables  $\rm (A)$  and  $\rm (B)$  result from the polynomial   $p_1(x) = x^4 + x + 1$   or from   $p_2(x) =x^4 + x^3 + 1$.   You are to make these assignments in subtasks  (1)  and  (2).
  • In the subtask  (3)  you are also to complete the missing powers  $\alpha^5, \ \alpha^6, \ \alpha^7$  and  $\alpha^8$  in the table  $\rm (B)$.
  • The subtask  (4)  refers to the also irreducible polynomial   $p_3(x) = x^4 + x^3 + x^2 + x +1$.  According to the above criteria,  you are to decide whether this polynomial is primitive.


Hints:

  • The literature citation  [LN97]  refers to the book  "Lidl, R.; Niederreiter, H.:  Finite Fields.  Encyclopedia of Mathematics and its Application. 2nd ed. Cambridge: University Press, 1997."


Questions

1

Which polynomial underlies the table  $\rm (A)$ ?

$p_1(x) = x^4 + x + 1$,
$p_2(x) = x^4 + x^3 + 1$.

2

Which polynomial underlies the table  $\rm (B)$ ?

$p_1(x) = x^4 + x + 1$,
$p_2(x) = x^4 + x^3 + 1$.

3

Complete the entries missing in the table  $\rm (B)$.  Which of the following entries are correct?

$\alpha^5 = \alpha^3 + \alpha + 1$   ⇒   Coefficient vector  "$1011$",
$\alpha^6 = \alpha^2 + 1$   ⇒   Coefficient vector  "$0111$",
$\alpha^7 = \alpha^3 + \alpha^2 + \alpha + 1$   ⇒   Coefficient vector  "$1111$"
$\alpha^8 = \alpha^3 + \alpha^2 + \alpha$   ⇒   Coefficient vector  "$1110$".

4

Is the polynomial   $p_3(x) = x^4 + x^3 + x^2 + x + 1$   primitive?  Clarify this question using the powers  $\alpha^i$  $(i$  where necessary$)$.

Yes.
No.


Solution

(1)  From the upper power table  $\rm (A)$  on the data page one recognizes among other things the property

$$\alpha^{4} = \alpha + 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}\alpha^{4} + \alpha + 1 = 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} p(x) = x^4 + x +1 =p_1(x)\hspace{0.05cm}.$$

Thus,  the proposed solution 1  is correct.


(2)  Following the same procedure,  it can be shown that the power table  $\rm (B)$  is based on the polynomial  $p_2(x) = x^4 + x^3 + 1$   ⇒   Proposed solution 2.


(3)  Starting from polynomial  $p_2(x) = x^4 + x^3 + 1$  one obtains from the determining equation  $p(\alpha) = 0$  the result  $\alpha^4 = \alpha^3 + 1$. This further yields:

$$\alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^4 = \alpha \cdot (\alpha^3 + 1) = \alpha^4 + \alpha = \alpha^3 + \alpha +1\hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm vector\hspace{0.15cm} 1011},$$
$$\alpha^6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^5 = \alpha \cdot (\alpha^3 +\alpha + 1) = \alpha^4 + \alpha^2 + \alpha= \alpha^3 +\alpha^2 + \alpha + 1\hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm vector\hspace{0.15cm} 1111},$$
$$\alpha^7 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^6 = \alpha^4 +\alpha^3 +\alpha^2 +\alpha = \alpha^2 + \alpha + 1\hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm vector\hspace{0.15cm} 0111},$$
$$\alpha^8 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^7 = \alpha \cdot (\alpha^2 + \alpha + 1) = \alpha^3 +\alpha^2 +\alpha \hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm vector\hspace{0.15cm} 1110}.$$
  • Thus,  only the  proposed solutions 1 and 4  are correct.  The other two statements are interchanged.
  • The following are the complete power tables for  $p_1(x) = x^4 + x + 1$  (left,  red background) and for  $p_2(x) = x^4 + x^3 + 1$  (right,  blue background).
Complete power tables over  $\rm GF(2^4)$  for two different polynomials
$($Sorry,  we used here the German terms$)$


(4) The polynomials  $p_1(x) = x^4 + x + 1$  and  $p_2(x) = x^4 + x^3 + 1$  are primitive.

  • This can be seen from the fact that  $\alpha^i \ne 1$  for  $0 < i < 14$  in each case.
  • In contrast,  $\alpha^{15} = \alpha^0 = 1$ holds.  In both cases,  the Galois field can be expressed as follows:
$${\rm GF}(2^4) = \{\hspace{0.1cm}0\hspace{0.05cm},\hspace{0.1cm} \alpha^{0} = 1,\hspace{0.05cm}\hspace{0.1cm} \alpha\hspace{0.05cm},\hspace{0.1cm} \alpha^{2},\hspace{0.1cm} ... \hspace{0.1cm} , \hspace{0.1cm}\alpha^{14}\hspace{0.1cm}\}\hspace{0.05cm}. $$

⇒   For the polynomial  $p_3(x) = x^4 + x^3 + x^2 + x +1$  we get:

$$\alpha^4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^3 + \alpha^2 + \alpha +1\hspace{0.25cm} \Rightarrow\hspace{0.25cm}{\rm vector\hspace{0.15cm} 1111}\hspace{0.05cm},$$
$$\alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^4 = \alpha^4 + \alpha^3 + \alpha^2 + \alpha = $$
$$= (\alpha^3 + \alpha^2 + \alpha +1) + \alpha^3 + \alpha^2 + \alpha = 1 \hspace{0.25cm} \Rightarrow\hspace{0.25cm}{\rm vector\hspace{0.15cm} 0001}\hspace{0.05cm}.$$
  • So here is already  $\alpha^5 = \alpha^0 = 1 $
    $\Rightarrow \ p_3(x)$ is not a primitive polynomial   ⇒   Proposed solution 2.
  • For the other powers of this polynomial holds:
$$\alpha^6 = \alpha^{11} = \alpha\hspace{0.05cm},\hspace{0.2cm} \alpha^7 = \alpha^{12} = \alpha^2\hspace{0.05cm},\hspace{0.2cm} \alpha^8 = \alpha^{13} = \alpha^3\hspace{0.05cm},$$
$$\alpha^9 = \alpha^{14} = \alpha^4\hspace{0.05cm},\hspace{0.2cm} \alpha^{10} = \alpha^{15} = \alpha^0 = 1\hspace{0.05cm}.$$