Difference between revisions of "Aufgaben:Exercise 2.5: Three Variants of GF(2 power 4)"

From LNTwww
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
{{quiz-Header|Buchseite=Channel_Coding/Extension_Field}}
 
{{quiz-Header|Buchseite=Channel_Coding/Extension_Field}}
  
[[File:P_ID2508__KC_A_2_5.png|right|frame|Powers of two different extension fields over $\rm GF(2^4)$ - a not quite complete list]]
+
[[File:EN_KC_A_2_5.png|right|frame|Powers of two different extension fields over $\rm GF(2^4)$ - a not quite complete list]]
Irreducible and primitive polynomials have great importance in the description of error correction methods. For example, in [LN97] one finds the following irreducible polynomials of degree  $m = 4$:
+
Irreducible and primitive polynomials have great importance in the description of error correction methods.  For example,  in  '''[LN97]'''  one finds the following irreducible polynomials of degree  $m = 4$:
 
* $p_1(x) = x^4 + x +1$,
 
* $p_1(x) = x^4 + x +1$,
 +
 
* $p_2(x) = x^4 + x^3 + 1$,
 
* $p_2(x) = x^4 + x^3 + 1$,
 +
 
* $p_3(x) = x^4 + x^3 + x^2 + x + 1$.
 
* $p_3(x) = x^4 + x^3 + x^2 + x + 1$.
  
  
The first two polynomials are also primitive. This can be seen from the power tables given on the right – the lower table  $\rm (B)$  however not quite complete.  
+
The first two polynomials are also primitive.  This can be seen from the power tables given on the right – the lower table  $\rm (B)$  however not quite complete.
*From both tables we see that all powers  $\alpha^i$  for  $1 ≤ i ≤ 14$  are unequal  $1$  in the polynomial representation. Only for  $i = 15$  does it follow that
+
:$$\alpha^{15} = \alpha^{0} = 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}{\rm Koeffizientenvektor\hspace{0.15cm} 0001}\hspace{0.05cm} .$$
+
*From both tables we see that all powers  $\alpha^i$  for   $1 ≤ i ≤ 14$   are unequal  $1$  in the polynomial representation.  Only for  $i = 15$  it follows that
*It is not specified whether the tables  $\rm (A)$  and  $\rm (B)$  result from the polynomial  $p_1(x) = x^4 + x + 1$  or from  $p_2(x) =x^4 + x^3 + 1$ . You are to make these assignments in subtasks '''(1)''' and '''(2)'''.  
+
:$$\alpha^{15} = \alpha^{0} = 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}{\rm Coefficient\hspace{0.15cm}vector\hspace{0.15cm} 0001}\hspace{0.05cm} .$$
*In the subtask '''(3)''' you are also to complete the missing powers  $\alpha^5, \ \alpha^6, \ \alpha^7$  and  $\alpha^8$  in the table  $\rm (B)$  .
+
*It is not specified whether the tables  $\rm (A)$  and  $\rm (B)$  result from the polynomial   $p_1(x) = x^4 + x + 1$   or from   $p_2(x) =x^4 + x^3 + 1$.   You are to make these assignments in subtasks  '''(1)'''  and  '''(2)'''.
*The subtask '''(4)''' refers to the also irreducible polynomial  $p_3(x) = x^4 + x^3 + x^2 + x +1$. According to the above criteria, you are to decide whether this polynomial is primitive.
+
 
+
*In the subtask  '''(3)'''  you are also to complete the missing powers  $\alpha^5, \ \alpha^6, \ \alpha^7$  and  $\alpha^8$  in the table  $\rm (B)$.
  
 +
*The subtask  '''(4)'''  refers to the also irreducible polynomial   $p_3(x) = x^4 + x^3 + x^2 + x +1$.  According to the above criteria,  you are to decide whether this polynomial is primitive.
  
  
  
 +
Hints:
 +
*The exercise belongs to the chapter  [[Channel_Coding/Extension_Field|"Extension Field"]].
  
Hints:
+
*The literature citation  '''[LN97]'''  refers to the book  "Lidl, R.; Niederreiter, H.:  Finite Fields.  Encyclopedia of Mathematics and its Application. 2nd ed. Cambridge: University Press, 1997."
*The exercise belongs to the chapter  [[Channel_Coding/Extension_Field|"extension field"]].
 
*The literature citation  [LN97]  refers to the book "Lidl, R.; Niederreiter, H.: ''Finite Fields''. Encyclopedia of Mathematics and its Application. 2nd ed. Cambridge: University Press, 1997."
 
  
  
Line 38: Line 41:
 
+ $p_2(x) = x^4 + x^3 + 1$.
 
+ $p_2(x) = x^4 + x^3 + 1$.
  
{Complete the entries missing in the table  $\rm (B)$ . Which of the following are correct?
+
{Complete the entries missing in the table  $\rm (B)$.  Which of the following entries are correct?
 
|type="[]"}
 
|type="[]"}
+ $\alpha^5 = \alpha^3 + \alpha + 1$   ⇒   Coefficient vector "$1011$",
+
+ $\alpha^5 = \alpha^3 + \alpha + 1$   ⇒   Coefficient vector  "$1011$",
- $\alpha^6 = \alpha^2 + 1$   ⇒   Coefficient vector "$0111$",
+
- $\alpha^6 = \alpha^2 + 1$   ⇒   Coefficient vector  "$0111$",
- $\alpha^7 = \alpha^3 + \alpha^2 + \alpha + 1$   ⇒   Coefficient vector "$1111$"
+
- $\alpha^7 = \alpha^3 + \alpha^2 + \alpha + 1$   ⇒   Coefficient vector  "$1111$"
+ $\alpha^8 = \alpha^3 + \alpha^2 + \alpha$   ⇒   Coefficient vector "$1110$".
+
+ $\alpha^8 = \alpha^3 + \alpha^2 + \alpha$   ⇒   Coefficient vector  "$1110$".
  
{Is  $p_3(x) = x^4 + x^3 + x^2 + x + 1$  a primitive polynomial? Clarify this question using powers  $\alpha^i$  $(i$ where necessary$)$.
+
{Is the polynomial   $p_3(x) = x^4 + x^3 + x^2 + x + 1$   primitive?  Clarify this question using the powers  $\alpha^i$  $(i$  where necessary$)$.
 
|type="()"}
 
|type="()"}
 
- Yes.
 
- Yes.
Line 57: Line 60:
 
p(x) = x^4 + x +1 =p_1(x)\hspace{0.05cm}.$$
 
p(x) = x^4 + x +1 =p_1(x)\hspace{0.05cm}.$$
  
Thus, the <u>proposed solution 1</u> is correct.
+
Thus,&nbsp; the <u>proposed solution 1</u>&nbsp; is correct.
 
 
 
 
  
'''(2)'''&nbsp; Following the same procedure, it can be shown that the power table &nbsp;$\rm (B)$&nbsp; is based on the polynomial $p_2(x) = x^4 + x^3 + 1$ &nbsp; &#8658; &nbsp; <u>Proposed solution 2</u>.
 
  
 +
'''(2)'''&nbsp; Following the same procedure,&nbsp; it can be shown that the power table &nbsp;$\rm (B)$&nbsp; is based on the polynomial&nbsp; $p_2(x) = x^4 + x^3 + 1$ &nbsp; &#8658; &nbsp; <u>Proposed solution 2</u>.
  
  
'''(3)'''&nbsp; Starting from polynomial $p_2(x) = x^4 + x^3 + 1$ one obtains from the determining equation $p(\alpha) = 0$ the result $\alpha^4 = \alpha^3 + 1$. This further yields:
+
'''(3)'''&nbsp; Starting from polynomial&nbsp; $p_2(x) = x^4 + x^3 + 1$&nbsp; one obtains from the determining equation&nbsp; $p(\alpha) = 0$&nbsp; the result&nbsp; $\alpha^4 = \alpha^3 + 1$. This further yields:
:$$\alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^4 = \alpha \cdot (\alpha^3 + 1) = \alpha^4 + \alpha = \alpha^3 + \alpha +1\hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm Vector\hspace{0.15cm} 1011},$$
+
:$$\alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^4 = \alpha \cdot (\alpha^3 + 1) = \alpha^4 + \alpha = \alpha^3 + \alpha +1\hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm vector\hspace{0.15cm} 1011},$$
:$$\alpha^6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^5 = \alpha \cdot (\alpha^3 +\alpha + 1) = \alpha^4 + \alpha^2 + \alpha= \alpha^3 +\alpha^2  + \alpha + 1\hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm Vektor\hspace{0.15cm} 1111},$$
+
:$$\alpha^6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^5 = \alpha \cdot (\alpha^3 +\alpha + 1) = \alpha^4 + \alpha^2 + \alpha= \alpha^3 +\alpha^2  + \alpha + 1\hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm vector\hspace{0.15cm} 1111},$$
:$$\alpha^7 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^6 = \alpha^4 +\alpha^3 +\alpha^2 +\alpha =  \alpha^2  + \alpha + 1\hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm Vector\hspace{0.15cm} 0111},$$
+
:$$\alpha^7 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^6 = \alpha^4 +\alpha^3 +\alpha^2 +\alpha =  \alpha^2  + \alpha + 1\hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm vector\hspace{0.15cm} 0111},$$
:$$\alpha^8 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^7 = \alpha \cdot (\alpha^2  + \alpha + 1) = \alpha^3 +\alpha^2 +\alpha \hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm Vector\hspace{0.15cm} 1110}.$$
+
:$$\alpha^8 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^7 = \alpha \cdot (\alpha^2  + \alpha + 1) = \alpha^3 +\alpha^2 +\alpha \hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm vector\hspace{0.15cm} 1110}.$$
  
*Thus, only the <u>proposed solutions 1 and 4</u> are correct. The other two statements are interchanged.  
+
*Thus,&nbsp; only the&nbsp; <u>proposed solutions 1 and 4</u>&nbsp; are correct.&nbsp; The other two statements are interchanged.
*The following are the complete power tables for $p_1(x) = x^4 + x + 1$ (left, red background) and for $p_2(x) = x^4 + x^3 + 1$ (right, blue background).
+
 +
*The following are the complete power tables for&nbsp; $p_1(x) = x^4 + x + 1$&nbsp; (left,&nbsp; red background) and for&nbsp; $p_2(x) = x^4 + x^3 + 1$&nbsp; (right,&nbsp; blue background).
  
 +
[[File:P_ID2512__KC_A_2_5d_neu.png|right|frame|Complete power tables over&nbsp; $\rm GF(2^4)$&nbsp; for two different polynomials <br>$($Sorry,&nbsp; we used here the German terms$)$]]
  
[[File:P_ID2512__KC_A_2_5d_neu.png|center|frame|Complete power tables over $\rm GF(2^4)$ for two different polynomials]]
 
  
  
'''(4)'''&nbsp; The two polynomials&nbsp; $p_1(x) = x^4 + x + 1$&nbsp; and&nbsp; $p_2(x) = x^4 + x^3 + 1$&nbsp; are primitive.  
+
'''(4)''' The polynomials&nbsp; $p_1(x) = x^4 + x + 1$&nbsp; and&nbsp; $p_2(x) = x^4 + x^3 + 1$&nbsp; are primitive.  
*This can be seen from the fact that $\alpha^i$ is not equal to $1$ for $0 < i < 14$ in each case.  
+
*This can be seen from the fact that&nbsp; $\alpha^i \ne 1$&nbsp; for&nbsp; $0 < i < 14$&nbsp; in each case.
*In contrast, $\alpha^{15} = \alpha^0 = 1$ holds. In both cases, the Galois field can be expressed as follows:
+
 +
*In contrast,&nbsp; $\alpha^{15} = \alpha^0 = 1$ holds.&nbsp; In both cases,&nbsp; the Galois field can be expressed as follows:
 
:$${\rm GF}(2^4) = \{\hspace{0.1cm}0\hspace{0.05cm},\hspace{0.1cm} \alpha^{0}  = 1,\hspace{0.05cm}\hspace{0.1cm}
 
:$${\rm GF}(2^4) = \{\hspace{0.1cm}0\hspace{0.05cm},\hspace{0.1cm} \alpha^{0}  = 1,\hspace{0.05cm}\hspace{0.1cm}
 
\alpha\hspace{0.05cm},\hspace{0.1cm} \alpha^{2},\hspace{0.1cm}  ... \hspace{0.1cm}  , \hspace{0.1cm}\alpha^{14}\hspace{0.1cm}\}\hspace{0.05cm}. $$
 
\alpha\hspace{0.05cm},\hspace{0.1cm} \alpha^{2},\hspace{0.1cm}  ... \hspace{0.1cm}  , \hspace{0.1cm}\alpha^{14}\hspace{0.1cm}\}\hspace{0.05cm}. $$
  
For the polynomial&nbsp; $p_3(x) = x^4 + x^3 + x^2 + x +1$&nbsp; we get:
+
&rArr; &nbsp; For the polynomial&nbsp; $p_3(x) = x^4 + x^3 + x^2 + x +1$&nbsp; we get:
:$$\alpha^4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^3 + \alpha^2 + \alpha  +1\hspace{0.25cm} \Rightarrow\hspace{0.25cm}{\rm Vektor\hspace{0.15cm} 1111}\hspace{0.05cm},$$
+
:$$\alpha^4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^3 + \alpha^2 + \alpha  +1\hspace{0.25cm} \Rightarrow\hspace{0.25cm}{\rm vector\hspace{0.15cm} 1111}\hspace{0.05cm},$$
:$$\alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^4 = \alpha^4 + \alpha^3 + \alpha^2 + \alpha  = (\alpha^3 + \alpha^2 + \alpha  +1) + \alpha^3 + \alpha^2 + \alpha  = 1 \hspace{0.25cm} \Rightarrow\hspace{0.25cm}{\rm Vektor\hspace{0.15cm} 0001}\hspace{0.05cm}.$$
+
:$$\alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^4 = \alpha^4 + \alpha^3 + \alpha^2 + \alpha  = $$
 
+
::$$= (\alpha^3 + \alpha^2 + \alpha  +1) + \alpha^3 + \alpha^2 + \alpha  = 1 \hspace{0.25cm} \Rightarrow\hspace{0.25cm}{\rm vector\hspace{0.15cm} 0001}\hspace{0.05cm}.$$
*So here already $\alpha^5 = \alpha^0 = 1 \Rightarrow \ p_3(x)$ is not a primitive polynomial &nbsp; &#8658; &nbsp; <u>Proposed solution 2</u>.  
+
*So here is already&nbsp; $\alpha^5 = \alpha^0 = 1 $ <br>$\Rightarrow \ p_3(x)$ is not a primitive polynomial &nbsp; &#8658; &nbsp; <u>Proposed solution 2</u>.
*For the other powers, this polynomial holds:
+
 +
*For the other powers of this polynomial holds:
 
:$$\alpha^6 = \alpha^{11} = \alpha\hspace{0.05cm},\hspace{0.2cm}   
 
:$$\alpha^6 = \alpha^{11} = \alpha\hspace{0.05cm},\hspace{0.2cm}   
 
\alpha^7 = \alpha^{12} = \alpha^2\hspace{0.05cm},\hspace{0.2cm}
 
\alpha^7 = \alpha^{12} = \alpha^2\hspace{0.05cm},\hspace{0.2cm}

Latest revision as of 19:10, 3 October 2022

Powers of two different extension fields over $\rm GF(2^4)$ - a not quite complete list

Irreducible and primitive polynomials have great importance in the description of error correction methods.  For example,  in  [LN97]  one finds the following irreducible polynomials of degree  $m = 4$:

  • $p_1(x) = x^4 + x +1$,
  • $p_2(x) = x^4 + x^3 + 1$,
  • $p_3(x) = x^4 + x^3 + x^2 + x + 1$.


The first two polynomials are also primitive.  This can be seen from the power tables given on the right – the lower table  $\rm (B)$  however not quite complete.

  • From both tables we see that all powers  $\alpha^i$  for   $1 ≤ i ≤ 14$   are unequal  $1$  in the polynomial representation.  Only for  $i = 15$  it follows that
$$\alpha^{15} = \alpha^{0} = 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}{\rm Coefficient\hspace{0.15cm}vector\hspace{0.15cm} 0001}\hspace{0.05cm} .$$
  • It is not specified whether the tables  $\rm (A)$  and  $\rm (B)$  result from the polynomial   $p_1(x) = x^4 + x + 1$   or from   $p_2(x) =x^4 + x^3 + 1$.   You are to make these assignments in subtasks  (1)  and  (2).
  • In the subtask  (3)  you are also to complete the missing powers  $\alpha^5, \ \alpha^6, \ \alpha^7$  and  $\alpha^8$  in the table  $\rm (B)$.
  • The subtask  (4)  refers to the also irreducible polynomial   $p_3(x) = x^4 + x^3 + x^2 + x +1$.  According to the above criteria,  you are to decide whether this polynomial is primitive.


Hints:

  • The literature citation  [LN97]  refers to the book  "Lidl, R.; Niederreiter, H.:  Finite Fields.  Encyclopedia of Mathematics and its Application. 2nd ed. Cambridge: University Press, 1997."


Questions

1

Which polynomial underlies the table  $\rm (A)$ ?

$p_1(x) = x^4 + x + 1$,
$p_2(x) = x^4 + x^3 + 1$.

2

Which polynomial underlies the table  $\rm (B)$ ?

$p_1(x) = x^4 + x + 1$,
$p_2(x) = x^4 + x^3 + 1$.

3

Complete the entries missing in the table  $\rm (B)$.  Which of the following entries are correct?

$\alpha^5 = \alpha^3 + \alpha + 1$   ⇒   Coefficient vector  "$1011$",
$\alpha^6 = \alpha^2 + 1$   ⇒   Coefficient vector  "$0111$",
$\alpha^7 = \alpha^3 + \alpha^2 + \alpha + 1$   ⇒   Coefficient vector  "$1111$"
$\alpha^8 = \alpha^3 + \alpha^2 + \alpha$   ⇒   Coefficient vector  "$1110$".

4

Is the polynomial   $p_3(x) = x^4 + x^3 + x^2 + x + 1$   primitive?  Clarify this question using the powers  $\alpha^i$  $(i$  where necessary$)$.

Yes.
No.


Solution

(1)  From the upper power table  $\rm (A)$  on the data page one recognizes among other things the property

$$\alpha^{4} = \alpha + 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}\alpha^{4} + \alpha + 1 = 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} p(x) = x^4 + x +1 =p_1(x)\hspace{0.05cm}.$$

Thus,  the proposed solution 1  is correct.


(2)  Following the same procedure,  it can be shown that the power table  $\rm (B)$  is based on the polynomial  $p_2(x) = x^4 + x^3 + 1$   ⇒   Proposed solution 2.


(3)  Starting from polynomial  $p_2(x) = x^4 + x^3 + 1$  one obtains from the determining equation  $p(\alpha) = 0$  the result  $\alpha^4 = \alpha^3 + 1$. This further yields:

$$\alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^4 = \alpha \cdot (\alpha^3 + 1) = \alpha^4 + \alpha = \alpha^3 + \alpha +1\hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm vector\hspace{0.15cm} 1011},$$
$$\alpha^6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^5 = \alpha \cdot (\alpha^3 +\alpha + 1) = \alpha^4 + \alpha^2 + \alpha= \alpha^3 +\alpha^2 + \alpha + 1\hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm vector\hspace{0.15cm} 1111},$$
$$\alpha^7 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^6 = \alpha^4 +\alpha^3 +\alpha^2 +\alpha = \alpha^2 + \alpha + 1\hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm vector\hspace{0.15cm} 0111},$$
$$\alpha^8 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^7 = \alpha \cdot (\alpha^2 + \alpha + 1) = \alpha^3 +\alpha^2 +\alpha \hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm vector\hspace{0.15cm} 1110}.$$
  • Thus,  only the  proposed solutions 1 and 4  are correct.  The other two statements are interchanged.
  • The following are the complete power tables for  $p_1(x) = x^4 + x + 1$  (left,  red background) and for  $p_2(x) = x^4 + x^3 + 1$  (right,  blue background).
Complete power tables over  $\rm GF(2^4)$  for two different polynomials
$($Sorry,  we used here the German terms$)$


(4) The polynomials  $p_1(x) = x^4 + x + 1$  and  $p_2(x) = x^4 + x^3 + 1$  are primitive.

  • This can be seen from the fact that  $\alpha^i \ne 1$  for  $0 < i < 14$  in each case.
  • In contrast,  $\alpha^{15} = \alpha^0 = 1$ holds.  In both cases,  the Galois field can be expressed as follows:
$${\rm GF}(2^4) = \{\hspace{0.1cm}0\hspace{0.05cm},\hspace{0.1cm} \alpha^{0} = 1,\hspace{0.05cm}\hspace{0.1cm} \alpha\hspace{0.05cm},\hspace{0.1cm} \alpha^{2},\hspace{0.1cm} ... \hspace{0.1cm} , \hspace{0.1cm}\alpha^{14}\hspace{0.1cm}\}\hspace{0.05cm}. $$

⇒   For the polynomial  $p_3(x) = x^4 + x^3 + x^2 + x +1$  we get:

$$\alpha^4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^3 + \alpha^2 + \alpha +1\hspace{0.25cm} \Rightarrow\hspace{0.25cm}{\rm vector\hspace{0.15cm} 1111}\hspace{0.05cm},$$
$$\alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^4 = \alpha^4 + \alpha^3 + \alpha^2 + \alpha = $$
$$= (\alpha^3 + \alpha^2 + \alpha +1) + \alpha^3 + \alpha^2 + \alpha = 1 \hspace{0.25cm} \Rightarrow\hspace{0.25cm}{\rm vector\hspace{0.15cm} 0001}\hspace{0.05cm}.$$
  • So here is already  $\alpha^5 = \alpha^0 = 1 $
    $\Rightarrow \ p_3(x)$ is not a primitive polynomial   ⇒   Proposed solution 2.
  • For the other powers of this polynomial holds:
$$\alpha^6 = \alpha^{11} = \alpha\hspace{0.05cm},\hspace{0.2cm} \alpha^7 = \alpha^{12} = \alpha^2\hspace{0.05cm},\hspace{0.2cm} \alpha^8 = \alpha^{13} = \alpha^3\hspace{0.05cm},$$
$$\alpha^9 = \alpha^{14} = \alpha^4\hspace{0.05cm},\hspace{0.2cm} \alpha^{10} = \alpha^{15} = \alpha^0 = 1\hspace{0.05cm}.$$