Difference between revisions of "Aufgaben:Exercise 2.5Z: Linear Distortions with DSB-AM"

From LNTwww
 
(27 intermediate revisions by 5 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1013__Mod_Z_2_5.png|right|]]
+
[[File:P_ID1013__Mod_Z_2_5.png|right|frame|Considered system model]]
Auch in dieser Zusatzaufgabe wird wie in A2.5 die Kombination ZSB–AM/Synchrondemodulator bei Berücksichtigung eines linear verzerrenden Kanals untersucht.
+
As in  [[Aufgaben:Exercise_2.5:_DSB-AM_via_a_Gaussian_Channel|Exercise 2.5]]  here we will also examine:
 +
*the DSB–AM/synchronous demodulator combination,
 +
*considerations involving a linear distorting channel.
  
Das Quellensignal $q(t)$ sei ein Cosinussignal mit Amplitude $A_N$ und Frequenz $f_N$, so dass das Spektrum des modulierten Signals wie folgt lautet:
 
$$S(f)= \frac{A_{\rm N}}{4} \cdot \left[\delta(f + f_{\rm O}) + \delta(f + f_{\rm U}) + \delta(f - f_{\rm U}) + \delta(f - f_{\rm O}) \right]\hspace{0.05cm}.$$
 
Die Abkürzungen stehen für $f_O = f_T + f_N$ (oberes Seitenband) und $f_U = f_T – f_N$ (unteres Seitenband). Der Kanalfrequenzgang ist nur für diese beiden Frequenzen gegeben und lautet:
 
$$ H_{\rm K}(f_{\rm O}) = R_{\rm O} + {\rm j} \cdot I_{\rm O},\hspace{0.2cm}H_{\rm K}(f_{\rm U}) = R_{\rm U} + {\rm j} \cdot I_{\rm U} \hspace{0.05cm}.$$
 
Für negative Frequenzen gilt stets $H_K(– f) = H_K*(f)$.
 
  
Verwenden Sie bei numerischen Berechnungen folgende Zahlenwerte:
+
Let the source signal  $q(t)$  be a cosine signal with amplitude  $A_{\rm N}$  and frequency  $f_{\rm N}$, such that the spectrum of the modulated signal is as follows:
$$A_{\rm N} = 2\,{\rm V}, \hspace{0.15cm}f_{\rm N} = 3\,{\rm kHz}, \hspace{0.15cm}f_{\rm T} = 30\,{\rm kHz} \hspace{0.05cm},$$
+
:$$S(f)= \frac{A_{\rm N}}{4} \cdot \big[\delta(f + f_{\rm O}) + \delta(f + f_{\rm U}) + \delta(f - f_{\rm U}) + \delta(f - f_{\rm O}) \big]\hspace{0.05cm}.$$
$$R_{\rm U} = 0.8, \hspace{0.15cm}I_{\rm U} = -0.2, \hspace{0.15cm}R_{\rm O} = 0.4, \hspace{0.15cm}I_{\rm O} = -0.2 \hspace{0.05cm}.$$
+
The abbreviations stand for  
In der Teilaufgabe c) soll die Lösung über den resultierenden Frequenzgang von Modulator, Kanal und Demodulator erfolgen:
+
*the upper sideband  (German:  "oberes Seitenband"   ⇒ subscript  "O")   $f_{\rm O} = f_{\rm T} + f_{\rm N}$,  and  
$$H_{\rm MKD}(f) = {1}/{2} \cdot \left[ H_{\rm K}(f + f_{\rm T}) + H_{\rm K}(f - f_{\rm T})\right]\hspace{0.05cm}.$$
+
*the lower sideband  (German:  "unteres Seitenband"   ⇒ subscript  "U")  $f_{\rm U} = f_{\rm T} - f_{\rm N}$.  
Abschließend wird in der Teilaufgabe d) der folgende Kanalfrequenzgang betrachtet (die Darstellung gilt nur für positive Frequenzen):
 
$$ H_{\rm K}(f) = \frac{1}{1 + 3{\rm j} \cdot ({f}/{f_{\rm T}} - 1)}\hspace{0.05cm}.$$
 
'''Hinweis:''' Diese Aufgabe bezieht sich auf den Theorieteil von [http://en.lntwww.de/Modulationsverfahren/Synchrondemodulation Kapitel 2.2].
 
  
  
===Fragebogen===
+
The channel frequency response  (German:  "Kanalfrequenzgang"   ⇒ subscript  "K")  is only given for these two frequencies and is:
 +
:$$ H_{\rm K}(f_{\rm O}) = R_{\rm O} + {\rm j} \cdot I_{\rm O},\hspace{0.2cm}H_{\rm K}(f_{\rm U}) = R_{\rm U} + {\rm j} \cdot I_{\rm U} \hspace{0.05cm}.$$
 +
For negative frequencies,  $H_{\rm K}(– f) = H_{\rm K}^*(f)$ always holds.
 +
 
 +
Use the following values for numerical calculations :
 +
:$$A_{\rm N} = 2\,{\rm V}, \hspace{0.15cm}f_{\rm N} = 3\,{\rm kHz}, \hspace{0.15cm}f_{\rm T} = 30\,{\rm kHz} \hspace{0.05cm},$$
 +
:$$R_{\rm U} = 0.8, \hspace{0.15cm}I_{\rm U} = -0.2, \hspace{0.15cm}R_{\rm O} = 0.4, \hspace{0.15cm}I_{\rm O} = -0.2 \hspace{0.05cm}.$$
 +
In subtask  '''(3)'''  the solution should be found from the resulting frequency response of modulator, channel and demodulator:
 +
:$$H_{\rm MKD}(f) = {1}/{2} \cdot \big[ H_{\rm K}(f + f_{\rm T}) + H_{\rm K}(f - f_{\rm T})\big]\hspace{0.05cm}.$$
 +
Finally,  in subtask  '''(4)'''  the following channel frequency response is considered  (this equationt is only valid for positive frequencies):
 +
:$$ H_{\rm K}(f) = H_{\rm(4)}(f) = \frac{1}{1 + 3{\rm j} \cdot ({f}/{f_{\rm T}} - 1)}\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*This exercise belongs to the chapter   [[Modulation_Methods/Synchronous_Demodulation|Synchronous Demodulation]].
 +
*Particular reference is made to the page   [[Modulation_Methods/Synchronous_Demodulation#Influence_of_linear_channel_distortions|Influence of linear channel distortions]].
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
 
|type="[]"}
+
{Let &nbsp;$R_{\rm U} = 0.8, \ I_{\rm U} = -0.2, \ R_{\rm O} = 0.4, \ I_{\rm O} = -0.2.$&nbsp; Calculate and sketch the spectrum &nbsp;$R(f)$&nbsp; at the channel output. <br>What is the spectral line at&nbsp; $-f_{\rm O}$?
- Falsch
+
|type="{}"}
+ Richtig
+
${\rm Re}[R(-f_{\rm O})] \ = \ $ { 0.2 3% } $\ \text{V}$
 +
${\rm Im}[R(-f_{\rm O})] \ = \ $ { 0.1 3% } $\ \text{V}$
  
  
{Input-Box Frage
+
{What is the sink signal &nbsp;$v(t)$?&nbsp; Take the synchronous demodulator's low-pass into account during calculation. <br>What is the signal value when&nbsp;$t = 0$?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$ v(t = 0) \ = \ $ { 1.2 3% } $\ \text{V}$
 
 
  
 +
{Now calculate the sink signal &nbsp;$v(t)$&nbsp; over the resulting frequency response &nbsp;$H_{\rm MKD}(f)$&nbsp; and evaluate the calculation process.
 +
|type="()"}
 +
- The calculation according to subtask '''(2)'''&nbsp; leads to faster success.
 +
+ The calculation according to subtask '''(3)'''&nbsp; leads to faster success.
  
 +
{Calculate &nbsp;$v(t)$&nbsp; for the channel frequency response &nbsp;$ H_{\rm K}(f) = H_{\rm(4)}(f)$.&nbsp; What is the signal value when &nbsp;$t = 0$?
 +
|type="{}"}
 +
$ v(t = 0) \ = \ $ { 1.835 3% }  $\ \text{V}$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
[[File:P_ID1014__Mod_Z_2_5_a.png|right|frame|Spectrum&nbsp; $R(f)$&nbsp; of the received signal]]
'''2.'''
+
'''(1)'''&nbsp; In general,&nbsp; $R(f) = S(f) · H_K(f)$.&nbsp; This gives the line spectrum as shown in the adjacent sketch&nbsp; (all weights still have to be supplemented by the unit "Volt").
'''3.'''
+
 
'''4.'''
+
*For the weight of the spectral line at&nbsp; $f = -f_{\rm O}$&nbsp; it is valid:
'''5.'''
+
:$${\rm Re}[R(-f_{\rm O})]\hspace{0.15cm}\underline{=0.2 \ \rm V},$$
'''6.'''
+
:$${\rm Im}[R(-f_{\rm O})]\hspace{0.15cm}\underline{=0.1 \ \rm V}.$$
'''7.'''
+
 
 +
 
 +
'''(2)'''&nbsp; The spectral function &nbsp; $V(f)$&nbsp; of the sink signal&nbsp; $v(t)$&nbsp; is:
 +
:$$V(f)  =  \big[ R(f) \star \left[\delta(f - f_{\rm T}) + \delta(f + f_{\rm T}) \right]\big]\cdot H_{\rm E}(f).$$
 +
*According to the laws of the Fourier transform, this can also be written as: 
 +
:$$V(f)  =  \frac{A_{\rm N}}{4} \cdot (R_{\rm O} + {\rm j} \cdot I_{\rm O}) \cdot \delta(f - f_{\rm N}) + \frac{A_{\rm N}}{4} \cdot (R_{\rm U} + {\rm j} \cdot I_{\rm U}) \cdot \delta(f + f_{\rm N})+$$
 +
:$$\hspace{2.25cm}+ \frac{A_{\rm N}}{4} \cdot (R_{\rm O} - {\rm j} \cdot I_{\rm O}) \cdot \delta(f + f_{\rm N})+ \frac{A_{\rm N}}{4} \cdot (R_{\rm U} - {\rm j} \cdot I_{\rm U}) \cdot \delta(f - f_{\rm N}) \hspace{0.05cm}.$$
 +
*All other terms are around twice the carrier frequency and are eliminated by the low-pass filter.
 +
* Rearranging and combining the terms results in:
 +
:$$V(f)  =  A_{\rm N}\cdot \frac{R_{\rm U} +R_{\rm O}}{2}\cdot \frac{1}{2} \cdot \left[\delta(f - f_{\rm N}) + \delta(f + f_{\rm N}) \right] + 
 +
  A_{\rm N}\cdot \frac{I_{\rm U} - I_{\rm O}}{2}\cdot \frac{\rm j}{2} \cdot \left[-\delta(f - f_{\rm N}) + \delta(f + f_{\rm N}) \right]$$
 +
:$$ \Rightarrow \hspace{0.3cm}v(t) = A_{\rm N}\cdot \frac{R_{\rm U} +R_{\rm O}}{2}\cdot\cos (\omega_{\rm N}\cdot t)+ A_{\rm N}\cdot \frac{I_{\rm U} -I_{\rm O}}{2}\cdot\sin (\omega_{\rm N}\cdot t)\hspace{0.05cm}.$$
 +
*When &nbsp; $R_{\rm U} = 0.8,\ I_{\rm U} = -0.2,\ R_{\rm O} = 0.4,\ I_{\rm O} = -0.2$&nbsp; it follows:
 +
:$$v(t) = 0.6 \cdot A_{\rm N}\cdot \cos (\omega_{\rm N}\cdot t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} v(t=0) = 0.6 \cdot A_{\rm N}\hspace{0.15cm}\underline {= 1.2\,{\rm V}}\hspace{0.05cm}.$$
 +
*There is attenuation by a factor of &nbsp; $0.6$ compared to&nbsp; $q(t)$.
 +
*The synchronous demodulator receives more information about the source signal through the lower sideband than through the upper one.
 +
*Because of the property&nbsp; $I_{\rm O} = I_{\rm U}$,&nbsp; $v(t)$&nbsp; is also cosine-shaped.
 +
*Accordingly,&nbsp; it is valid either no delay occurs or the delay is an even multiple of the period.
 +
 
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; The following equations apply here:
 +
:$$ H_{\rm K}(f_{\rm N}+ f_{\rm T})  =  R_{\rm O} + {\rm j} \cdot I_{\rm O} \hspace{0.05cm}, $$
 +
:$$ H_{\rm K}(f_{\rm N}- f_{\rm T})  =  H_{\rm K}^{\star}(f_{\rm T}- f_{\rm N}) = R_{\rm U} - {\rm j} \cdot I_{\rm U} $$
 +
:$$\Rightarrow \hspace{0.2cm} H_{\rm MKD}(f_{\rm N})  =  {1}/{2} \cdot \big[(R_{\rm O} +R_{\rm U}) + {\rm j} \cdot (I_{\rm O} -I_{\rm U}) \big]\hspace{0.05cm},\hspace{0.2cm} 
 +
H_{\rm MKD}(-f_{\rm N})  =  H_{\rm MKD}^\star(f_{\rm N}) = {1}/{2} \cdot \big[(R_{\rm O} +R_{\rm U}) - {\rm j} \cdot (I_{\rm O} -I_{\rm U}) \big]\hspace{0.05cm}.$$
 +
*Thus,&nbsp; one obtains the same result as in&nbsp; '''(2)''',&nbsp; but faster &nbsp; ⇒ &nbsp; <u>Answer 2</u>.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; For&nbsp; $f > 0$&nbsp; the resulting frequency response is:
 +
:$$H_{\rm MKD}(f)  =  {1}/{2} \cdot \left[ H_{\rm K}(f_{\rm T}+ f) + H_{\rm K}^\star(f_{\rm T}-f)\right]=  {1}/{2} \cdot \left[ \frac{1}{1 + 3{\rm j} \cdot (\frac{f_{\rm T}+f}{f_{\rm T}} - 1)} + \frac{1}{1 - 3{\rm j} \cdot (\frac{f_{\rm T}-f}{f_{\rm T}} - 1)}\right] $$
 +
:$$ \Rightarrow \hspace{0.3cm} H_{\rm MKD}(f) = \frac{1}{1 + {\rm j} \cdot {3f}/{f_{\rm T}} } \hspace{0.05cm}.$$
 +
*Inserted at the point where&nbsp; $f = f_{\rm N}$&nbsp; this leads to the result:
 +
:$$H_{\rm MKD}(f_{\rm N}) = \frac{1}{1 + {\rm j} \cdot {3f_{\rm N}}/{f_{\rm T}} } \hspace{1.0cm}
 +
\Rightarrow \hspace{0.3cm}{\rm magnitude} = \frac{1}{\sqrt{1 + ({3f_{\rm N}}/{f_{\rm T}} )^2}} \hspace{0.05cm}, \hspace{0.3cm} {\rm phase} = {\rm arctan}\hspace{0.1cm}({3f_{\rm N}}/{f_{\rm T}}) \hspace{0.05cm}.$$
 +
*When&nbsp; $f_{\rm N}/f_{\rm T} = 0.1$&nbsp; we get the magnitude&nbsp; $0.958$&nbsp; and the phase&nbsp; $16.7^\circ$.&nbsp; Thus, the sink signal is:
 +
:$$v(t) = 0.958 \cdot 2\,{\rm V}\cdot \cos (\omega_{\rm N}\cdot t + 16.7^\circ) \hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} v(t=0)= 1.916\,{\rm V}\cdot \cos ( 16.7^\circ)\hspace{0.15cm}\underline { = 1.835\,{\rm V}}\hspace{0.05cm}.$$
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Modulationsverfahren|^2.2 Synchrondemodulation^]]
+
[[Category:Modulation Methods: Exercises|^2.2 Synchronous Demodulation^]]

Latest revision as of 17:57, 8 December 2021

Considered system model

As in  Exercise 2.5  here we will also examine:

  • the DSB–AM/synchronous demodulator combination,
  • considerations involving a linear distorting channel.


Let the source signal  $q(t)$  be a cosine signal with amplitude  $A_{\rm N}$  and frequency  $f_{\rm N}$, such that the spectrum of the modulated signal is as follows:

$$S(f)= \frac{A_{\rm N}}{4} \cdot \big[\delta(f + f_{\rm O}) + \delta(f + f_{\rm U}) + \delta(f - f_{\rm U}) + \delta(f - f_{\rm O}) \big]\hspace{0.05cm}.$$

The abbreviations stand for  

  • the upper sideband  (German:  "oberes Seitenband"   ⇒ subscript  "O")   $f_{\rm O} = f_{\rm T} + f_{\rm N}$,  and  
  • the lower sideband  (German:  "unteres Seitenband"   ⇒ subscript  "U")  $f_{\rm U} = f_{\rm T} - f_{\rm N}$.


The channel frequency response  (German:  "Kanalfrequenzgang"   ⇒ subscript  "K")  is only given for these two frequencies and is:

$$ H_{\rm K}(f_{\rm O}) = R_{\rm O} + {\rm j} \cdot I_{\rm O},\hspace{0.2cm}H_{\rm K}(f_{\rm U}) = R_{\rm U} + {\rm j} \cdot I_{\rm U} \hspace{0.05cm}.$$

For negative frequencies,  $H_{\rm K}(– f) = H_{\rm K}^*(f)$ always holds.

Use the following values for numerical calculations :

$$A_{\rm N} = 2\,{\rm V}, \hspace{0.15cm}f_{\rm N} = 3\,{\rm kHz}, \hspace{0.15cm}f_{\rm T} = 30\,{\rm kHz} \hspace{0.05cm},$$
$$R_{\rm U} = 0.8, \hspace{0.15cm}I_{\rm U} = -0.2, \hspace{0.15cm}R_{\rm O} = 0.4, \hspace{0.15cm}I_{\rm O} = -0.2 \hspace{0.05cm}.$$

In subtask  (3)  the solution should be found from the resulting frequency response of modulator, channel and demodulator:

$$H_{\rm MKD}(f) = {1}/{2} \cdot \big[ H_{\rm K}(f + f_{\rm T}) + H_{\rm K}(f - f_{\rm T})\big]\hspace{0.05cm}.$$

Finally,  in subtask  (4)  the following channel frequency response is considered  (this equationt is only valid for positive frequencies):

$$ H_{\rm K}(f) = H_{\rm(4)}(f) = \frac{1}{1 + 3{\rm j} \cdot ({f}/{f_{\rm T}} - 1)}\hspace{0.05cm}.$$



Hints:



Questions

1

Let  $R_{\rm U} = 0.8, \ I_{\rm U} = -0.2, \ R_{\rm O} = 0.4, \ I_{\rm O} = -0.2.$  Calculate and sketch the spectrum  $R(f)$  at the channel output.
What is the spectral line at  $-f_{\rm O}$?

${\rm Re}[R(-f_{\rm O})] \ = \ $

$\ \text{V}$
${\rm Im}[R(-f_{\rm O})] \ = \ $

$\ \text{V}$

2

What is the sink signal  $v(t)$?  Take the synchronous demodulator's low-pass into account during calculation.
What is the signal value when $t = 0$?

$ v(t = 0) \ = \ $

$\ \text{V}$

3

Now calculate the sink signal  $v(t)$  over the resulting frequency response  $H_{\rm MKD}(f)$  and evaluate the calculation process.

The calculation according to subtask (2)  leads to faster success.
The calculation according to subtask (3)  leads to faster success.

4

Calculate  $v(t)$  for the channel frequency response  $ H_{\rm K}(f) = H_{\rm(4)}(f)$.  What is the signal value when  $t = 0$?

$ v(t = 0) \ = \ $

$\ \text{V}$


Solution

Spectrum  $R(f)$  of the received signal

(1)  In general,  $R(f) = S(f) · H_K(f)$.  This gives the line spectrum as shown in the adjacent sketch  (all weights still have to be supplemented by the unit "Volt").

  • For the weight of the spectral line at  $f = -f_{\rm O}$  it is valid:
$${\rm Re}[R(-f_{\rm O})]\hspace{0.15cm}\underline{=0.2 \ \rm V},$$
$${\rm Im}[R(-f_{\rm O})]\hspace{0.15cm}\underline{=0.1 \ \rm V}.$$


(2)  The spectral function   $V(f)$  of the sink signal  $v(t)$  is:

$$V(f) = \big[ R(f) \star \left[\delta(f - f_{\rm T}) + \delta(f + f_{\rm T}) \right]\big]\cdot H_{\rm E}(f).$$
  • According to the laws of the Fourier transform, this can also be written as:
$$V(f) = \frac{A_{\rm N}}{4} \cdot (R_{\rm O} + {\rm j} \cdot I_{\rm O}) \cdot \delta(f - f_{\rm N}) + \frac{A_{\rm N}}{4} \cdot (R_{\rm U} + {\rm j} \cdot I_{\rm U}) \cdot \delta(f + f_{\rm N})+$$
$$\hspace{2.25cm}+ \frac{A_{\rm N}}{4} \cdot (R_{\rm O} - {\rm j} \cdot I_{\rm O}) \cdot \delta(f + f_{\rm N})+ \frac{A_{\rm N}}{4} \cdot (R_{\rm U} - {\rm j} \cdot I_{\rm U}) \cdot \delta(f - f_{\rm N}) \hspace{0.05cm}.$$
  • All other terms are around twice the carrier frequency and are eliminated by the low-pass filter.
  • Rearranging and combining the terms results in:
$$V(f) = A_{\rm N}\cdot \frac{R_{\rm U} +R_{\rm O}}{2}\cdot \frac{1}{2} \cdot \left[\delta(f - f_{\rm N}) + \delta(f + f_{\rm N}) \right] + A_{\rm N}\cdot \frac{I_{\rm U} - I_{\rm O}}{2}\cdot \frac{\rm j}{2} \cdot \left[-\delta(f - f_{\rm N}) + \delta(f + f_{\rm N}) \right]$$
$$ \Rightarrow \hspace{0.3cm}v(t) = A_{\rm N}\cdot \frac{R_{\rm U} +R_{\rm O}}{2}\cdot\cos (\omega_{\rm N}\cdot t)+ A_{\rm N}\cdot \frac{I_{\rm U} -I_{\rm O}}{2}\cdot\sin (\omega_{\rm N}\cdot t)\hspace{0.05cm}.$$
  • When   $R_{\rm U} = 0.8,\ I_{\rm U} = -0.2,\ R_{\rm O} = 0.4,\ I_{\rm O} = -0.2$  it follows:
$$v(t) = 0.6 \cdot A_{\rm N}\cdot \cos (\omega_{\rm N}\cdot t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} v(t=0) = 0.6 \cdot A_{\rm N}\hspace{0.15cm}\underline {= 1.2\,{\rm V}}\hspace{0.05cm}.$$
  • There is attenuation by a factor of   $0.6$ compared to  $q(t)$.
  • The synchronous demodulator receives more information about the source signal through the lower sideband than through the upper one.
  • Because of the property  $I_{\rm O} = I_{\rm U}$,  $v(t)$  is also cosine-shaped.
  • Accordingly,  it is valid either no delay occurs or the delay is an even multiple of the period.



(3)  The following equations apply here:

$$ H_{\rm K}(f_{\rm N}+ f_{\rm T}) = R_{\rm O} + {\rm j} \cdot I_{\rm O} \hspace{0.05cm}, $$
$$ H_{\rm K}(f_{\rm N}- f_{\rm T}) = H_{\rm K}^{\star}(f_{\rm T}- f_{\rm N}) = R_{\rm U} - {\rm j} \cdot I_{\rm U} $$
$$\Rightarrow \hspace{0.2cm} H_{\rm MKD}(f_{\rm N}) = {1}/{2} \cdot \big[(R_{\rm O} +R_{\rm U}) + {\rm j} \cdot (I_{\rm O} -I_{\rm U}) \big]\hspace{0.05cm},\hspace{0.2cm} H_{\rm MKD}(-f_{\rm N}) = H_{\rm MKD}^\star(f_{\rm N}) = {1}/{2} \cdot \big[(R_{\rm O} +R_{\rm U}) - {\rm j} \cdot (I_{\rm O} -I_{\rm U}) \big]\hspace{0.05cm}.$$
  • Thus,  one obtains the same result as in  (2),  but faster   ⇒   Answer 2.


(4)  For  $f > 0$  the resulting frequency response is:

$$H_{\rm MKD}(f) = {1}/{2} \cdot \left[ H_{\rm K}(f_{\rm T}+ f) + H_{\rm K}^\star(f_{\rm T}-f)\right]= {1}/{2} \cdot \left[ \frac{1}{1 + 3{\rm j} \cdot (\frac{f_{\rm T}+f}{f_{\rm T}} - 1)} + \frac{1}{1 - 3{\rm j} \cdot (\frac{f_{\rm T}-f}{f_{\rm T}} - 1)}\right] $$
$$ \Rightarrow \hspace{0.3cm} H_{\rm MKD}(f) = \frac{1}{1 + {\rm j} \cdot {3f}/{f_{\rm T}} } \hspace{0.05cm}.$$
  • Inserted at the point where  $f = f_{\rm N}$  this leads to the result:
$$H_{\rm MKD}(f_{\rm N}) = \frac{1}{1 + {\rm j} \cdot {3f_{\rm N}}/{f_{\rm T}} } \hspace{1.0cm} \Rightarrow \hspace{0.3cm}{\rm magnitude} = \frac{1}{\sqrt{1 + ({3f_{\rm N}}/{f_{\rm T}} )^2}} \hspace{0.05cm}, \hspace{0.3cm} {\rm phase} = {\rm arctan}\hspace{0.1cm}({3f_{\rm N}}/{f_{\rm T}}) \hspace{0.05cm}.$$
  • When  $f_{\rm N}/f_{\rm T} = 0.1$  we get the magnitude  $0.958$  and the phase  $16.7^\circ$.  Thus, the sink signal is:
$$v(t) = 0.958 \cdot 2\,{\rm V}\cdot \cos (\omega_{\rm N}\cdot t + 16.7^\circ) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} v(t=0)= 1.916\,{\rm V}\cdot \cos ( 16.7^\circ)\hspace{0.15cm}\underline { = 1.835\,{\rm V}}\hspace{0.05cm}.$$