Difference between revisions of "Aufgaben:Exercise 2.6: Dimensions in GWSSUS"

From LNTwww
m (Text replacement - "power spectral density" to "power-spectral density")
 
(27 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Mobile Kommunikation/Das GWSSUS–Kanalmodell}}
+
{{quiz-Header|Buchseite=Mobile_Communications/The_GWSSUS_Channel_Model}}
  
[[File:P_ID2167__Mob_A_2_6.png|right|frame|Überblick der GWSSUS–Funktionen]]
+
[[File:P_ID2167__Mob_A_2_6.png|right|frame|Overview of the GWSSUS functions]]
The mobile radio channel can be described in very general terms by four system functions, whereby the relationship between each two functions is described by
+
The mobile radio channel can be described in very general terms by four system functions, whereby the relationship between each pair of functions is described by
 
* the Fourier transform or  
 
* the Fourier transform or  
* the Fourier retransformation
+
* the inverse Fourier transform.
  
  
is given.
+
We denote all of the functions with  $\eta_{i_1i_2}$. The indices $i_1$ and $i_2$ are defined as follows:
 +
* $\boldsymbol{\rm V}$  $($because of German  $\rm V\hspace{-0.05cm}$erzögerung$)$  stands for delay time  $\tau$  $($index  $i_1)$,
 +
* $\boldsymbol{\rm F}$   stands for frequency  $f$  $($index  $i_1)$,
 +
* $\boldsymbol{\rm Z}$  $($because of German  $\rm Z\hspace{-0.05cm}$eit$)$  stands for the time  $t$  $($index  $i_2)$,
 +
* $\boldsymbol{\rm D}$  stands for the Doppler frequency $f_{\rm D}$  $($index  $i_2)$.
  
We uniformly denote the functions with  $\eta_{12}$. The indices are agreed as follows:
 
* <b>V</b>&nbsp; stands for delay&nbsp; $\tau$&nbsp; (Index &bdquo;1&rdquo;),
 
* <b>F</b>&nbsp; stands for frequency&nbsp; $f$&nbsp; (index &bdquo;1&rdquo;),
 
* <b>Z</b>&nbsp; stands for the time&nbsp; $t$&nbsp; (index &bdquo;2&rdquo;)
 
* <b>D</b>&nbsp; stands for the Doppler frequency&nbsp; $f_{\rm D}$&nbsp; (index &bdquo;2&rdquo;).
 
  
 
+
The relationship between the functions is shown in the diagram (yellow background).&nbsp; The Fourier correspondences are shown in green:
The relationship between the functions is shown in the diagram (yellow background). The Fourier correspondences are shown in green:
+
* The transition from a circle filled with white to a circle filled with green corresponds to the&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#The_First_Fourier_Integral|Fourier transform]].
* The transition from a circle filled with white to a circle filled with green corresponds to a&nbsp; [[Signal representation/Fourier transform_and_-r%C3%BCcktransformation#The_first_Fourier integral|Fourier transform]].
+
* The transition from a circle filled with green to a circle filled with white corresponds to the&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#The_Second_Fourier_Integral|inverse Fourier transform]]&nbsp; (opposite direction).
* The transition from a circle filled with green to a circle filled with white corresponds to the&nbsp; [[Signal representation/Fourier transformation_and_-r%C3%BCcktransformation#The_second_Fourier integral|Fourier inverse transformation]]&nbsp; (opposite direction).
 
  
  
 
For example:  
 
For example:  
$$\eta_{\rm VZ}(\tau, t)
+
:$$\eta_{\rm VZ}(\tau, t)
  \hspace{0.2cm}  \stackrel{\a6}, \hspace{0.02cm}{0.02cm}{\circ\!-\!-\!-\!-\!-\!\bullet} \hspace{0.2cm} \eta_{\rm FZ}(f,t)\hspace{0.05cm}
+
  \hspace{0.2cm}  \stackrel{\tau, \hspace{0.02cm}f}{\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.2cm} \eta_{\rm FZ}(f,t)\hspace{0.05cm},
 
  \hspace{0.4cm}\eta_{\rm FZ}(f,t)
 
  \hspace{0.4cm}\eta_{\rm FZ}(f,t)
  \hspace{0.2cm}  \stackrel{f, \hspace{0.02cm}{\a6}{\bullet\!\bullet\} \hspace{0.2cm} \eta_{\rm VZ}(\tau, t)\hspace{0.05cm}.$$
+
  \hspace{0.2cm}  \stackrel{f, \hspace{0.02cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VZ}(\tau, t)\hspace{0.05cm}.$$
  
*The correlation function&nbsp; $\varphi_{12}$&nbsp; and the power density spectrum&nbsp; $\it \Phi_{\rm 12}$&nbsp; are provided with the same indices as the system function $\eta_{12}$.  
+
*The correlation function&nbsp; $\varphi_{i_1\hspace{0.02cm}i_2}$&nbsp; and the power-spectral density&nbsp; $\it \Phi_{i_1\hspace{0.02cm}i_2}$&nbsp; are provided with the same indices as the system function $\eta_{i_1\hspace{0.02cm}i_2}$.  
*Correlation functions can be recognized by the red font in the lower graph and all power density spectra are labeled in blue. The GWSSUS&ndash;model is always assumed.
+
*Correlation functions can be recognized by the red font in the lower graph and all power densitiy spectra are labeled in blue. The GWSSUS model is always assumed.
  
  
Let us consider here the system function&nbsp; $\eta_{\rm VZ}(\tau, t)$, i.e. the time variant impulse response&nbsp; $h(\tau, t)$. The following descriptive variables result for these:
+
Let us consider here the system function&nbsp; $\eta_{\rm VZ}(\tau, t)$, i.e. the time&ndash;variant impulse response&nbsp; $h(\tau, t)$.&nbsp; We define:
$$\varphi_{\rm VZ}(\tau_1, t_1, \tau_2, t_2) = {\rm E} \left [ \eta_{\rm VZ}(\tau_1, t_1) \cdot  
+
:$$\varphi_{\rm VZ}(\tau_1, t_1, \tau_2, t_2) = {\rm E} \left [ \eta_{\rm VZ}(\tau_1, t_1) \cdot  
 
  \eta_{\rm VZ}^{\star}(\tau_2, t_2) \right ]\hspace{0.05cm},$$
 
  \eta_{\rm VZ}^{\star}(\tau_2, t_2) \right ]\hspace{0.05cm},$$
$$\Delta \tau = \tau_2 - \tau_1 \hspace{0.05cm}, \hspace{0.2cm} \Delta t = t_2 - t_1
+
:$$\Delta \tau = \tau_2 - \tau_1 \hspace{0.05cm}, \hspace{0.2cm} \Delta t = t_2 - t_1
 
  \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 
  \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
  \varphi_{\rm VZ}(\delta \tau, \delta t) \hspace{0.05cm}, $$
+
  \varphi_{\rm VZ}(\Delta \tau, \Delta t) \hspace{0.05cm}, $$
$$\varphi_{\rm VZ}(\delta \tau, \delta t) = \delta(\delta \tau) \cdot {\it \Phi}_{\rm VZ}(\tau, \delta t) \hspace{0.05cm}.$$
+
:$$\varphi_{\rm VZ}(\Delta \tau, \Delta t) = \delta(\Delta \tau) \cdot {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.05cm}.$$
$${\it \phi}_{\rm V}(\tau) = {\it \phi}_{\rm VZ}(\tau, \delta t = 0)\hspace{0.05cm}. $$
+
:$${\it \Phi}_{\rm V}(\tau) = {\it \Phi}_{\rm VZ}(\tau, \Delta t = 0)\hspace{0.05cm}. $$
  
  
  
''Note:'' &nbsp; This task belongs to the chapter&nbsp; [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell| Das GWSUS&ndash;Kanalmodell]].
+
''Note:'' &nbsp; This exercise belongs to the chapter&nbsp; [[Mobile_Communications/The_GWSSUS_Channel_Model| The GWSSUS Channel Model]].
  
  
Line 49: Line 47:
 
===Questionnaire===
 
===Questionnaire===
 
<quiz display=simple>
 
<quiz display=simple>
{Are the specified units of the system functions correct?
+
{Which of the following specified dimensions of the system functions are correct?
 
|type="[]"}
 
|type="[]"}
+ $\eta_{\rm VZ}(\tau, t)$&nbsp; has the unit&nbsp; $[1/\rm s]$
+
+ $\eta_{\rm VZ}(\tau, t)$&nbsp; has the unit&nbsp; $[1/\rm s]$.
+ $\eta_{\rm FZ}(f, t)$&nbsp; has no unit.
+
+ $\eta_{\rm FZ}(f, t)$&nbsp; is without unit.
+ $\eta_{\rm VD}(\tau, f_{\rm D})$&nbsp; has no unit.
+
+ $\eta_{\rm VD}(\tau, f_{\rm D})$&nbsp; is without unit.
+ $\eta_{\rm FD}(f, f_{\rm D})$&nbsp; has the unit&nbsp; $[1/\rm Hz]$
+
+ $\eta_{\rm FD}(f, f_{\rm D})$&nbsp; has the unit&nbsp; $[1/\rm Hz]$.
  
{Do the units of the following functions match?
+
{Which of the following statements are correct?
 
|type="[]"}
 
|type="[]"}
- $\varphi_{\rm VZ}(\delta \tau, \delta t)$&nbsp; has the unit&nbsp; $[1/\rm s]$.
+
- $\varphi_{\rm VZ}(\Delta \tau, \Delta t)$&nbsp; has the unit&nbsp; $[1/\rm s]$.
+ ${\it \phi}_{\rm VZ}(\tau, {\rm \delta} t)$&nbsp; has the unit&nbsp; $[1/\rm s]$.
+
+ ${\it \phi}_{\rm VZ}(\tau, {\rm \Delta} t)$&nbsp; has the unit&nbsp; $[1/\rm s]$.
 
+ ${\it \phi}_{\rm V}(\tau)$&nbsp; has the unit&nbsp; $[1/\rm s]$.
 
+ ${\it \phi}_{\rm V}(\tau)$&nbsp; has the unit&nbsp; $[1/\rm s]$.
  
{Do the units of the other functions match?
+
{Which of the following statements  are correct?
 
|type="[]"}
 
|type="[]"}
 
+ $\varphi_{\rm FZ}(\Delta f, \Delta t),&nbsp; \varphi_{\rm F}(\Delta f)$&nbsp; and&nbsp; $\varphi_{\rm Z}(\Delta t)$&nbsp; have no unit.
 
+ $\varphi_{\rm FZ}(\Delta f, \Delta t),&nbsp; \varphi_{\rm F}(\Delta f)$&nbsp; and&nbsp; $\varphi_{\rm Z}(\Delta t)$&nbsp; have no unit.
 
- ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$&nbsp; has the unit&nbsp; $[1/\rm s]$.
 
- ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$&nbsp; has the unit&nbsp; $[1/\rm s]$.
+ ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$&nbsp; and&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; have the unit $[1/\rm Hz]$ each.
+
+ ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$&nbsp; and&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; have the unit&nbsp; $[1/\rm Hz]$ each.
 
</quiz>
 
</quiz>
  
===Sample solution===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''&nbsp; <u>All statements are correct</u>:  
 
'''(1)'''&nbsp; <u>All statements are correct</u>:  
*$\eta_{\rm VZ}(\tau, t)$ is the time variant impulse response, for which the term $h(\tau, t)$ is also common. Like every impulse response, $h(\tau, t)$ has the unit $[1/\rm s]$.  
+
*$\eta_{\rm VZ}(\tau, t)$&nbsp; is the time-variant impulse response, for which the term&nbsp; $h(\tau, t)$&nbsp; is also common.&nbsp; Like every impulse response,&nbsp; $h(\tau, t)$&nbsp; has the unit&nbsp; $[1/\rm s]$.  
*By Fourier transformation of the function $\eta_{\rm VZ}(\tau, t)$ with respect to the delay $\tau$ one obtains  
+
*By Fourier transform of the function&nbsp; $\eta_{\rm VZ}(\tau, t)$&nbsp; with respect to the delay&nbsp; $\tau$&nbsp; one obtains  
$$\eta_{\rm FZ}(f, t) = \int_{-\infty}^{+\infty} \eta_{\rm VZ}(\tau, t) \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi f \tau}\hspace{0.15cm}{\rm d}\tau  
+
:$$\eta_{\rm FZ}(f, t) = \int_{-\infty}^{+\infty} \eta_{\rm VZ}(\tau, t) \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi f \tau}\hspace{0.15cm}{\rm d}\tau  
 
  \hspace{0.05cm}. $$
 
  \hspace{0.05cm}. $$
  
*By the integration after $\tau$ (unit: $\rm s$), $\eta_{\rm FZ}(f, t)$, also called &bdquo;time-variant transfer function&rdquo; is without unit. In some literature, $H(f, t)$ is also used instead of $\eta_{\rm FZ}(f, t)$.
+
*Due to the integration over&nbsp; $\tau$&nbsp; $($unit:&nbsp; $\rm s)$, the time-variant transfer function&nbsp; $\eta_{\rm FZ}(f, t)$&nbsp; is dimensionless.&nbsp; <br>In some literature,&nbsp; $H(f, t)$&nbsp; is also used instead of&nbsp; $\eta_{\rm FZ}(f, t)$.
  
*The delay&ndash;Doppler&ndash;representation $\eta_{\rm VD}(\tau, f_{\rm D})$ also has no unit. This function results from the time variant impulse response $\eta_{\rm VZ}(\tau, t)$ by the Fourier transformation with respect to $t$:
+
*The delay&ndash;Doppler representation&nbsp; $\eta_{\rm VD}(\tau, f_{\rm D})$&nbsp; is dimensionless, too.&nbsp; This function results from the time-variant impulse response&nbsp; $\eta_{\rm VZ}(\tau, t)$&nbsp; by Fourier transform with respect to&nbsp; $t$:
$$\eta_{\rm VD}(\tau, f_{\rm D}) = \int_{-\infty}^{+\infty} \eta_{\rm VZ}(\tau, t) \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi f_{\rm D} t}\hspace{0.15cm}{\rm d}t  
+
:$$\eta_{\rm VD}(\tau, f_{\rm D}) = \int_{-\infty}^{+\infty} \eta_{\rm VZ}(\tau, t) \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi f_{\rm D} t}\hspace{0.15cm}{\rm d}t  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*The function $\eta_{\rm FD}(t, f_{\rm D})$ results from the dimensional functions $\eta_{\rm VD}(\tau, f_{\rm D})$ and $\eta_{\rm FZ}(f, t)$ respectively by a Fourier transformation, which results in the unit $[\rm s] = [1/\rm Hz]$.
+
*The function&nbsp; $\eta_{\rm FD}(t, f_{\rm D})$&nbsp; is obtained from the dimensionless functions&nbsp; $\eta_{\rm VD}(\tau, f_{\rm D})$&nbsp; and&nbsp; $\eta_{\rm FZ}(f, t)$&nbsp; respectively by a Fourier transform, which results in the unit&nbsp; $[\rm s] = [1/\rm Hz]$.
  
  
  
'''(2)'''&nbsp; Correct are the <u>solutions 2 and 3</u>:
+
'''(2)'''&nbsp; <u>Solutions 2 and 3</u> are correct:
*The autocorrelation function is by definition the following expected value:
+
*The auto-correlation&nbsp; $\rm (ACF)$&nbsp; function is by definition the following expected value:
$$\varphi_{\rm VZ}(\tau_1, t_1, \tau_2, t_2) = {\rm E} \left [ \eta_{\rm VZ}(\tau_1, t_1) \cdot  
+
:$$\varphi_{\rm VZ}(\tau_1, t_1, \tau_2, t_2) = {\rm E} \left [ \eta_{\rm VZ}(\tau_1, t_1) \cdot  
 
  \eta_{\rm VZ}^{\star}(\tau_2, t_2) \right ]\hspace{0.05cm}.$$
 
  \eta_{\rm VZ}^{\star}(\tau_2, t_2) \right ]\hspace{0.05cm}.$$
  
*Since the time variant impulse response $\eta_{\rm VZ}(\tau, t)$ has the unit $[1/\rm s]$, its AKF $\varphi_{\rm VZ}$ has the unit $[1/\rm s^2]$, both with the argument $(\tau_1, l_1, \tau_2, t_2)$ and with the GWSSUS&ndash; argument $(\delta \tau, \ \delta t)$.
+
*Since the time-variant impulse response&nbsp; $\eta_{\rm VZ}(\tau, t)$&nbsp; has the unit&nbsp; $[1/\rm s]$, its ACF&nbsp; $\varphi_{\rm VZ}(\Delta \tau, \Delta t)$&nbsp; has the unit&nbsp; $[1/\rm s^2]$, both in the general case&nbsp; $\varphi_{\rm VZ}(\tau_1, l_1, \tau_2, t_2)$&nbsp; and with the GWSSUS case&nbsp; $\varphi_{\rm VZ}(\Delta \tau, \ \Delta t)$.
  
*The Dirac function $\delta(\delta \tau)$ has the dimension $[1/\rm s]$, since the integral over all $\tau$ (with unit $[\rm s]$) must result in the value $1$. From this follows for the delay&ndash;time&ndash;cross power density ${\it \Phi}_{\rm VZ}(\tau, \delta \tau)$ the unit $[1/\rm s]$, as well as for the delay&ndash;power density ${\it \Phi}_{\rm V}(\tau) = {\it \Phi}_{\rm VZ}(\tau, \delta t = 0)$.  
+
*The Dirac function&nbsp; ${\rm \delta}(\Delta \tau)$&nbsp; has the unit&nbsp; $[1/\rm s]$, since the integral over all&nbsp; $\tau$&nbsp; $($with unit&nbsp; $[\rm s])$ must be&nbsp; $1$.&nbsp; Therefore, both the delay&ndash;time cross power-spectral density&nbsp; ${\it \Phi}_{\rm VZ}(\tau, \Delta \tau)$&nbsp; and the delay power-spectral density&nbsp; ${\it \Phi}_{\rm V}(\tau) = {\it \Phi}_{\rm VZ}(\tau, \Delta t = 0)$&nbsp; have unit&nbsp; $[1/\rm s]$.  
  
  
  
'''(3)'''&nbsp; Correct here are the <u>statements 1 and 3</u>:  
+
'''(3)'''&nbsp; <u>Statements 1 and 3</u> are correct:  
*Starting from the unit $[1/\rm s]$ of the function ${\it \Phi}_{\rm VZ}(\tau, \delta t)$ one arrives at $\tau$ or $\Delta t$ to the functions $\varphi_{\rm FZ}(\Delta f, \Delta t)$ or ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$. Both are dimensionless.
+
*The function&nbsp; ${\it \Phi}_{\rm VZ}(\tau, \Delta t)$&nbsp; has unit&nbsp; $[1/\rm s]$.&nbsp; Its Fourier transform with respect to&nbsp; $\tau$&nbsp; is&nbsp; $\varphi_{\rm FZ}(\Delta f, \Delta t)$, while its Fourier transform with respect to&nbsp; $t$&nbsp; is&nbsp; ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$.&nbsp; Both&nbsp; $\varphi_{\rm FZ}(\Delta f, \Delta t)$&nbsp; and&nbsp; ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$&nbsp; are therefore without unit.
  
*The frequency&ndash;Doppler&ndash;cross power density spectrum has the unit $[\rm s] = [1/\rm Hz]$, because
+
*The frequency&ndash;Doppler cross power-spectral density has the unit&nbsp; $[\rm s] = [1/\rm Hz]$, because
$${\it \Phi}_{\rm FD}(\delta f, f_{\rm D}) = \int_{-\infty}^{+\infty} {\it \Phi}_{\rm VD}(\tau, f_{\rm D}) \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi f_{\rm D} \tau}\hspace{0.15cm}{\rm d}\tau \hspace{0.05cm}. $$
+
:$${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D}) = \int_{-\infty}^{+\infty} {\it \Phi}_{\rm VD}(\tau, f_{\rm D}) \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi f_{\rm D} \tau}\hspace{0.15cm}{\rm d}\tau \hspace{0.05cm}. $$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Exercises for Mobile Communications|^2.3 The GWSSUS Channel Model^]]
+
[[Category:Mobile Communications: Exercises|^2.3 The GWSSUS Channel Model^]]

Latest revision as of 13:41, 17 February 2022

Overview of the GWSSUS functions

The mobile radio channel can be described in very general terms by four system functions, whereby the relationship between each pair of functions is described by

  • the Fourier transform or
  • the inverse Fourier transform.


We denote all of the functions with  $\eta_{i_1i_2}$. The indices $i_1$ and $i_2$ are defined as follows:

  • $\boldsymbol{\rm V}$  $($because of German  $\rm V\hspace{-0.05cm}$erzögerung$)$  stands for delay time  $\tau$  $($index  $i_1)$,
  • $\boldsymbol{\rm F}$  stands for frequency  $f$  $($index  $i_1)$,
  • $\boldsymbol{\rm Z}$  $($because of German  $\rm Z\hspace{-0.05cm}$eit$)$  stands for the time  $t$  $($index  $i_2)$,
  • $\boldsymbol{\rm D}$  stands for the Doppler frequency $f_{\rm D}$  $($index  $i_2)$.


The relationship between the functions is shown in the diagram (yellow background).  The Fourier correspondences are shown in green:

  • The transition from a circle filled with white to a circle filled with green corresponds to the  Fourier transform.
  • The transition from a circle filled with green to a circle filled with white corresponds to the  inverse Fourier transform  (opposite direction).


For example:

$$\eta_{\rm VZ}(\tau, t) \hspace{0.2cm} \stackrel{\tau, \hspace{0.02cm}f}{\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.2cm} \eta_{\rm FZ}(f,t)\hspace{0.05cm}, \hspace{0.4cm}\eta_{\rm FZ}(f,t) \hspace{0.2cm} \stackrel{f, \hspace{0.02cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VZ}(\tau, t)\hspace{0.05cm}.$$
  • The correlation function  $\varphi_{i_1\hspace{0.02cm}i_2}$  and the power-spectral density  $\it \Phi_{i_1\hspace{0.02cm}i_2}$  are provided with the same indices as the system function $\eta_{i_1\hspace{0.02cm}i_2}$.
  • Correlation functions can be recognized by the red font in the lower graph and all power densitiy spectra are labeled in blue. The GWSSUS model is always assumed.


Let us consider here the system function  $\eta_{\rm VZ}(\tau, t)$, i.e. the time–variant impulse response  $h(\tau, t)$.  We define:

$$\varphi_{\rm VZ}(\tau_1, t_1, \tau_2, t_2) = {\rm E} \left [ \eta_{\rm VZ}(\tau_1, t_1) \cdot \eta_{\rm VZ}^{\star}(\tau_2, t_2) \right ]\hspace{0.05cm},$$
$$\Delta \tau = \tau_2 - \tau_1 \hspace{0.05cm}, \hspace{0.2cm} \Delta t = t_2 - t_1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \varphi_{\rm VZ}(\Delta \tau, \Delta t) \hspace{0.05cm}, $$
$$\varphi_{\rm VZ}(\Delta \tau, \Delta t) = \delta(\Delta \tau) \cdot {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.05cm}.$$
$${\it \Phi}_{\rm V}(\tau) = {\it \Phi}_{\rm VZ}(\tau, \Delta t = 0)\hspace{0.05cm}. $$


Note:   This exercise belongs to the chapter  The GWSSUS Channel Model.


Questionnaire

1

Which of the following specified dimensions of the system functions are correct?

$\eta_{\rm VZ}(\tau, t)$  has the unit  $[1/\rm s]$.
$\eta_{\rm FZ}(f, t)$  is without unit.
$\eta_{\rm VD}(\tau, f_{\rm D})$  is without unit.
$\eta_{\rm FD}(f, f_{\rm D})$  has the unit  $[1/\rm Hz]$.

2

Which of the following statements are correct?

$\varphi_{\rm VZ}(\Delta \tau, \Delta t)$  has the unit  $[1/\rm s]$.
${\it \phi}_{\rm VZ}(\tau, {\rm \Delta} t)$  has the unit  $[1/\rm s]$.
${\it \phi}_{\rm V}(\tau)$  has the unit  $[1/\rm s]$.

3

Which of the following statements are correct?

$\varphi_{\rm FZ}(\Delta f, \Delta t),  \varphi_{\rm F}(\Delta f)$  and  $\varphi_{\rm Z}(\Delta t)$  have no unit.
${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$  has the unit  $[1/\rm s]$.
${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$  and  ${\it \Phi}_{\rm D}(f_{\rm D})$  have the unit  $[1/\rm Hz]$ each.


Solution

(1)  All statements are correct:

  • $\eta_{\rm VZ}(\tau, t)$  is the time-variant impulse response, for which the term  $h(\tau, t)$  is also common.  Like every impulse response,  $h(\tau, t)$  has the unit  $[1/\rm s]$.
  • By Fourier transform of the function  $\eta_{\rm VZ}(\tau, t)$  with respect to the delay  $\tau$  one obtains
$$\eta_{\rm FZ}(f, t) = \int_{-\infty}^{+\infty} \eta_{\rm VZ}(\tau, t) \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi f \tau}\hspace{0.15cm}{\rm d}\tau \hspace{0.05cm}. $$
  • Due to the integration over  $\tau$  $($unit:  $\rm s)$, the time-variant transfer function  $\eta_{\rm FZ}(f, t)$  is dimensionless. 
    In some literature,  $H(f, t)$  is also used instead of  $\eta_{\rm FZ}(f, t)$.
  • The delay–Doppler representation  $\eta_{\rm VD}(\tau, f_{\rm D})$  is dimensionless, too.  This function results from the time-variant impulse response  $\eta_{\rm VZ}(\tau, t)$  by Fourier transform with respect to  $t$:
$$\eta_{\rm VD}(\tau, f_{\rm D}) = \int_{-\infty}^{+\infty} \eta_{\rm VZ}(\tau, t) \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi f_{\rm D} t}\hspace{0.15cm}{\rm d}t \hspace{0.05cm}.$$
  • The function  $\eta_{\rm FD}(t, f_{\rm D})$  is obtained from the dimensionless functions  $\eta_{\rm VD}(\tau, f_{\rm D})$  and  $\eta_{\rm FZ}(f, t)$  respectively by a Fourier transform, which results in the unit  $[\rm s] = [1/\rm Hz]$.


(2)  Solutions 2 and 3 are correct:

  • The auto-correlation  $\rm (ACF)$  function is by definition the following expected value:
$$\varphi_{\rm VZ}(\tau_1, t_1, \tau_2, t_2) = {\rm E} \left [ \eta_{\rm VZ}(\tau_1, t_1) \cdot \eta_{\rm VZ}^{\star}(\tau_2, t_2) \right ]\hspace{0.05cm}.$$
  • Since the time-variant impulse response  $\eta_{\rm VZ}(\tau, t)$  has the unit  $[1/\rm s]$, its ACF  $\varphi_{\rm VZ}(\Delta \tau, \Delta t)$  has the unit  $[1/\rm s^2]$, both in the general case  $\varphi_{\rm VZ}(\tau_1, l_1, \tau_2, t_2)$  and with the GWSSUS case  $\varphi_{\rm VZ}(\Delta \tau, \ \Delta t)$.
  • The Dirac function  ${\rm \delta}(\Delta \tau)$  has the unit  $[1/\rm s]$, since the integral over all  $\tau$  $($with unit  $[\rm s])$ must be  $1$.  Therefore, both the delay–time cross power-spectral density  ${\it \Phi}_{\rm VZ}(\tau, \Delta \tau)$  and the delay power-spectral density  ${\it \Phi}_{\rm V}(\tau) = {\it \Phi}_{\rm VZ}(\tau, \Delta t = 0)$  have unit  $[1/\rm s]$.


(3)  Statements 1 and 3 are correct:

  • The function  ${\it \Phi}_{\rm VZ}(\tau, \Delta t)$  has unit  $[1/\rm s]$.  Its Fourier transform with respect to  $\tau$  is  $\varphi_{\rm FZ}(\Delta f, \Delta t)$, while its Fourier transform with respect to  $t$  is  ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$.  Both  $\varphi_{\rm FZ}(\Delta f, \Delta t)$  and  ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$  are therefore without unit.
  • The frequency–Doppler cross power-spectral density has the unit  $[\rm s] = [1/\rm Hz]$, because
$${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D}) = \int_{-\infty}^{+\infty} {\it \Phi}_{\rm VD}(\tau, f_{\rm D}) \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi f_{\rm D} \tau}\hspace{0.15cm}{\rm d}\tau \hspace{0.05cm}. $$