Difference between revisions of "Aufgaben:Exercise 2.6: Free Space Attenuation"

From LNTwww
m
Line 4: Line 4:
  
 
[[File:P_ID1016__Mod_A_2_6.jpg|right|frame|Photo of a transmitter]]
 
[[File:P_ID1016__Mod_A_2_6.jpg|right|frame|Photo of a transmitter]]
A shortwave transmitter operated according to the modulation method "DSB-AM with carrier" works with carrier frequency  $f_{\rm T} = 20 \ \rm MHz$  and transmit power $P_{\rm S} = 100\ \rm  kW$.  It is designed for a bandwidth of  $B_{\rm NF} = 8 \ \rm kHz$ .
+
A shortwave transmitter operated according to the modulation method  "DSB-AM with carrier" works with carrier frequency  $f_{\rm T} = 20 \ \rm MHz$  and transmit power $P_{\rm S} = 100\ \rm  kW$.  It is designed for a low-frequency bandwidth of  $B_{\rm NF} = 8 \ \rm kHz$.
  
 
+
For test operation,  a mobile receiver is used, which operates with a synchronous demodulator.  If this is located at distance   $d$  from the transmitter,  the attenuation function of the transmission channel can be approximated as follows:  
For test operation, a mobile receiver is used, which operates with a synchronous demodulator.  If this is located at distance   $d$  from the transmitter, the attenuation function of the transmission channel can be approximated as follows:  
 
 
:$$\frac{a_{\rm K}(d, f)}{\rm dB} = 34 + 20 \cdot {\rm lg }\hspace{0.2cm}\frac{d}{\rm km} + 20 \cdot {\rm lg }\hspace{0.2cm}\frac{f}{\rm MHz}
 
:$$\frac{a_{\rm K}(d, f)}{\rm dB} = 34 + 20 \cdot {\rm lg }\hspace{0.2cm}\frac{d}{\rm km} + 20 \cdot {\rm lg }\hspace{0.2cm}\frac{f}{\rm MHz}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
This equation describes so-called  '''free space attenuation''', which also depends on the (carrier) frequency.
+
This equation describes so-called  '''free space attenuation''',  which also depends on the (carrier) frequency.
  
 
+
It can be assumed that the entire DSB-AM spectrum is attenuated like the carrier frequency.  This means that
It can be assumed that the entire DSB-AM spectrum is attenuated like the carrier frequency.  This means that
 
 
*the slightly larger attenuation of the upper sideband (USB), and
 
*the slightly larger attenuation of the upper sideband (USB), and
 
*the slightly smaller attenuation of the lower sideband (LSB)
 
*the slightly smaller attenuation of the lower sideband (LSB)
Line 23: Line 21:
  
  
For the first two subtasks, it is assumed that the transmitter transmits only the carrier, which is equivalent to the modulation depth being  $m = 0$ .
+
For the first two subtasks,  it is assumed that the transmitter transmits only the carrier,  which is equivalent to the modulation depth being  $m = 0$.
 
 
 
 
 
 
  
  
Line 33: Line 28:
  
  
''Hints:''
+
Hints:  
 
*This exercise belongs to the chapter   [[Modulation_Methods/Synchronous_Demodulation|Synchronous Demodulation]].
 
*This exercise belongs to the chapter   [[Modulation_Methods/Synchronous_Demodulation|Synchronous Demodulation]].
 
*Particular reference is made to the page   [[Modulation_Methods/Synchronous_Demodulation#Sink_SNR_and_the_performance_parameter|Sink SNR and the performance parameter]].
 
*Particular reference is made to the page   [[Modulation_Methods/Synchronous_Demodulation#Sink_SNR_and_the_performance_parameter|Sink SNR and the performance parameter]].
Line 50: Line 45:
 
$d \ = \ $ { 31.6 3% } $\ \rm km$
 
$d \ = \ $ { 31.6 3% } $\ \rm km$
  
{Which sink SNR results from the distance  $d$ calculated in subtask  '''(2)'''  when the modulation depth is  $m = 0.5$ ?
+
{Which sink SNR results from the distance  $d$  calculated in subtask  '''(2)'''  when the modulation depth is  $m = 0.5$ ?
 
|type="{}"}
 
|type="{}"}
 
$10 · \lg ρ_v \ = \ $  { 51.5 3% } $\ \text{dB}$
 
$10 · \lg ρ_v \ = \ $  { 51.5 3% } $\ \text{dB}$
Line 60: Line 55:
 
{Which of the following statements are true?
 
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
+ DSB–AM with carrier does not make sense for energy reasons if a synchronous demodulator is used.
+
+ "DSB–AM with carrier"  does not make sense for energy reasons if a synchronous demodulator is used.
- DSB–AM without carrier does not make sense for energy reasons if a synchronous demodulator is used.
+
- "DSB–AM without carrier"  does not make sense for energy reasons if a synchronous demodulator is used.
 
+ A small carrier component can be helpful for the required frequency and phase synchronization.
 
+ A small carrier component can be helpful for the required frequency and phase synchronization.
  

Revision as of 18:23, 8 December 2021

Photo of a transmitter

A shortwave transmitter operated according to the modulation method  "DSB-AM with carrier" works with carrier frequency  $f_{\rm T} = 20 \ \rm MHz$  and transmit power $P_{\rm S} = 100\ \rm kW$.  It is designed for a low-frequency bandwidth of  $B_{\rm NF} = 8 \ \rm kHz$.

For test operation,  a mobile receiver is used, which operates with a synchronous demodulator.  If this is located at distance   $d$  from the transmitter,  the attenuation function of the transmission channel can be approximated as follows:

$$\frac{a_{\rm K}(d, f)}{\rm dB} = 34 + 20 \cdot {\rm lg }\hspace{0.2cm}\frac{d}{\rm km} + 20 \cdot {\rm lg }\hspace{0.2cm}\frac{f}{\rm MHz} \hspace{0.05cm}.$$

This equation describes so-called  free space attenuation,  which also depends on the (carrier) frequency.

It can be assumed that the entire DSB-AM spectrum is attenuated like the carrier frequency.  This means that

  • the slightly larger attenuation of the upper sideband (USB), and
  • the slightly smaller attenuation of the lower sideband (LSB)


are compensated for by a corresponding pre-distortion at the transmitter.

Let the effective noise power density at the receiver be  $N_0 = 10^{–14} \ \rm W/Hz.$


For the first two subtasks,  it is assumed that the transmitter transmits only the carrier,  which is equivalent to the modulation depth being  $m = 0$.




Hints:


Questions

1

What power is received at a distance  $d = 10 \ \rm km$  from the transmitter when only the carrier is transmitted  $(m = 0)$?

$P_{\rm E} \ = \ $

$\ \rm mW$

2

At what distance  $d$  from the transmitter is the receiver located when the received power is  $P_{\rm E} = 100 \ \rm µ W$??

$d \ = \ $

$\ \rm km$

3

Which sink SNR results from the distance  $d$  calculated in subtask  (2)  when the modulation depth is  $m = 0.5$ ?

$10 · \lg ρ_v \ = \ $

$\ \text{dB}$

4

What is the minimum modulation depth  $m$  that can be chosen for a resulting sink-to-noise ratio of  $60 \ \rm dB$ ?

$m_{\min} \ = \ $

5

Which of the following statements are true?

"DSB–AM with carrier"  does not make sense for energy reasons if a synchronous demodulator is used.
"DSB–AM without carrier"  does not make sense for energy reasons if a synchronous demodulator is used.
A small carrier component can be helpful for the required frequency and phase synchronization.


Solution

(1)  According to the equation for free space attenuation, when   $d = 10\ \rm km$  and  $f_{\rm T} = 20 \ \rm MHz$, then:

$$\frac{a_{\rm K}(d, f_{\rm T})}{\rm dB} = 34 + 20 \cdot {\rm lg }\hspace{0.1cm}\frac{d}{\rm km} + 20 \cdot {\rm lg }\hspace{0.1cm}\frac{f_{\rm T}}{\rm MHz}= 34 + 20 \cdot {\rm lg }\hspace{0.1cm}(10) + 20 \cdot {\rm lg }\hspace{0.1cm}(20)\approx 80\hspace{0.1cm}{\rm dB} \hspace{0.05cm}.$$
  • This corresponds to a power reduction by a factor of   $10^{8}$:
$$P_{\rm E}= 10^{-8} \cdot P_{\rm S}= 10^{-8} \cdot 100\,{\rm kW}\hspace{0.15cm}\underline {= 1\, {\rm mW} \hspace{0.05cm}}.$$


(2)  From  $P_{\rm S} = 10^5 \ \rm W$, $P_{\rm E} = 10{^–4}\ \rm W$  follows a free space attenuation of  $90 \ \rm dB$.  From this, we further obtain:

$$20 \cdot {\rm lg }\hspace{0.1cm}\frac{d}{\rm km} = ( 90-34 - 26)\hspace{0.1cm}{\rm dB}= 30\,{\rm dB}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} d = 10^{1.5}\,{\rm km}\hspace{0.15cm}\underline { = 31.6\,{\rm km}\hspace{0.05cm}}.$$


(3)  For DSB–AM without a carrier, that is, for a modulation depth  $m → ∞$, the following would hold:

$$ \rho_{v } = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{{N_0} \cdot B_{\rm NF}} = \frac{ P_{\rm E}}{{N_0} \cdot B_{\rm NF}}= \frac{10^{-4}\,{\rm W}}{10^{-14}\,{\rm W/Hz}\cdot 8 \cdot 10^{3}\,{\rm Hz} } = 1.25 \cdot 10^6\hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg }\hspace{0.1cm}\rho_{v } \approx 61\,{\rm dB}\hspace{0.05cm}.$$
  • With modulation depth  $m = 0.5$  the sink SNR becomes smaller by a factor of  $[1 +{2}/{m^2}]^{-1} = {1}/{9}$ .  Thus, the signal-to-noise ratio at the sink is also smaller:
$$ 10 \cdot {\rm lg }\hspace{0.1cm}\rho_{v } = 61\,{\rm dB}- 10 \cdot {\rm lg }\hspace{0.1cm}(9) \hspace{0.15cm}\underline {\approx 51.5\,{\rm dB}\hspace{0.05cm}}.$$


(4)  According to the calculations in subtask  (3) , the following condition must be satisfied:

$$ 10 \cdot {\rm lg }\hspace{0.1cm}\left({1 + {2}/{m^2}}\right) < 1\,{\rm dB}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 1 +{2}/{m^2} < 10^{0.1}=1.259 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{2}/{m^2} < 0.259 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} m > \sqrt{8}\approx 2.83 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} m_{\rm min} \hspace{0.15cm}\underline {= 2.83} \hspace{0.05cm}.$$


(5)  Answers 1 and 3 are correct:

  • When using a synchronous demodulator, the addition of the carrier makes no sense unless the former is useful for the required carrier recovery.
  • Since the carrier cannot be used for demodulation, only a fraction of the transmit power is available for demodulation   $($one third for   $m = 1$, one ninth for  $m = 0.5)$.