Difference between revisions of "Aufgaben:Exercise 2.6: Two-Way Channel"

From LNTwww
Line 53: Line 53:
  
  
{Am Eingang des Systems mit gleichen Parametern wie in Teilaufgabe&nbsp; '''(2)'''&nbsp; liegt nun der Diracpuls &nbsp;$x_1(t)$&nbsp;  an. <br>Which statements are true for the output signal&nbsp;$y_1(t)$&nbsp;?
+
{The Dirac comb&nbsp;$x_1(t)$&nbsp; is applied to the input of the system with the same parameters as in subtask&nbsp; '''(2)'''&nbsp;. <br>Which statements are true for the output signal&nbsp;$y_1(t)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ $y_1(t)$&nbsp; ist gegenüber &nbsp;$x_1(t)$&nbsp; um eine Konstante gedämpft/verstärkt.
+
+ $y_1(t)$&nbsp; is attenuated/amplified by a constant compared to&nbsp;$x_1(t)$&nbsp;.
- $y_1(t)$&nbsp; ist gegenüber &nbsp;$x_1(t)$&nbsp; verschoben.
+
- $y_1(t)$&nbsp; is shifted with respect to&nbsp;$x_1(t)$&nbsp;.
- $y_1(t)$&nbsp; weist gegenüber &nbsp;$x_1(t)$&nbsp; Verzerrungen auf.
+
- $y_1(t)$&nbsp; exhibits distortions with respect to&nbsp;$x_1(t)$&nbsp;.
  
  
{Berechnen Sie das Signal &nbsp;$y_2(t)$&nbsp; als Systemantwort auf das Cosinussignal &nbsp;$x_2(t)$. &nbsp; Welcher Signalwert tritt zum Zeitpunkt &nbsp;$t = 0$&nbsp; auf?
+
{Compute the signal&nbsp;$y_2(t)$&nbsp; as the system response to the cosine signal&nbsp;$x_2(t)$. &nbsp; What is the signal value at time&nbsp;$t = 0$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$y_2(t = 0) \ = \ $  { 0.996 3% }
 
$y_2(t = 0) \ = \ $  { 0.996 3% }
  
  
{Welche Aussagen treffen bezüglich der Signale &nbsp;$x_3(t)$&nbsp; und &nbsp;$y_3(t)$&nbsp; zu?
+
{Which statements are true regarding the signals&nbsp;$x_3(t)$&nbsp; and &nbsp;$y_3(t)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
- $y_3(t)$&nbsp; weist gegenüber &nbsp;$x_3(t)$&nbsp; keine Verzerrungen auf.
+
- $y_3(t)$&nbsp; does not exhibit any distortions with respect to&nbsp;$x_3(t)$&nbsp;.
- $y_3(t)$&nbsp; weist gegenüber &nbsp;$x_3(t)$&nbsp; Dämpfungsverzerrungen auf.
+
- $y_3(t)$&nbsp; exhibits attenuation distortions with respect to&nbsp;$x_3(t)$&nbsp;.
+ $y_3(t)$&nbsp; weist gegenüber &nbsp;$x_3(t)$&nbsp; Phasenverzerrungen auf.
+
+ $y_3(t)$&nbsp; exhibits phase distortions with respect to&nbsp;$x_3(t)$&nbsp;.
  
  
Line 76: Line 76:
 
===Solutions===
 
===Solutions===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>Aussagen 1 und 2</u>:
+
'''(1)'''&nbsp; <u>Statements 1 and 2</u> are correct:
 
*Mit &nbsp;$z_1 = 1$, $T_1 = 0$, $z_2 =0$&nbsp; ist &nbsp;$h(t) = \delta(t)$&nbsp; und dementsprechend &nbsp;$H(f) = 1$, so dass stets &nbsp;$y(t) = x(t)$&nbsp; gelten wird.  
 
*Mit &nbsp;$z_1 = 1$, $T_1 = 0$, $z_2 =0$&nbsp; ist &nbsp;$h(t) = \delta(t)$&nbsp; und dementsprechend &nbsp;$H(f) = 1$, so dass stets &nbsp;$y(t) = x(t)$&nbsp; gelten wird.  
*Jede verzerrungsfreie Kanalimpulsantwort &nbsp;$h(t)$&nbsp; besteht aus einer einzigen Diracfunktion, zum Beispiel bei &nbsp;$t = T_1$.  
+
*Each distortion-free channel impulse response&nbsp;$h(t)$&nbsp; consists of a single Dirac function, for example at&nbsp;$t = T_1$.  
*Dieser Fall ist im Modell durch &nbsp;$z_2 =0$&nbsp; berücksichtigt. Damit lautet der Frequenzgang:
+
*This case is accounted for in the model by&nbsp;$z_2 =0$&nbsp;. Thus, the frequency response is:
 
:$$H(f)=  z_1\cdot {\rm e}^{-{\rm j}\cdot \hspace{0.05cm}2 \pi f T_1} \ \Rightarrow \ y(t) = z_1 \cdot x(t- T_1).$$
 
:$$H(f)=  z_1\cdot {\rm e}^{-{\rm j}\cdot \hspace{0.05cm}2 \pi f T_1} \ \Rightarrow \ y(t) = z_1 \cdot x(t- T_1).$$
 
*Dagegen wird der Kanal immer dann zu linearen Verzerrungen führen, wenn gleichzeitig &nbsp;$z_1$&nbsp; und &nbsp;$z_2$&nbsp; von Null verschieden sind.  
 
*Dagegen wird der Kanal immer dann zu linearen Verzerrungen führen, wenn gleichzeitig &nbsp;$z_1$&nbsp; und &nbsp;$z_2$&nbsp; von Null verschieden sind.  

Revision as of 23:37, 19 September 2021

Impulse response of the two-way channel

The so-called two-way channel is characterised by the following impulse response  $($with  $T_1 < T_2)$:

$$h(t) = z_1 \cdot \delta ( t - T_1) + z_2 \cdot \delta ( t - T_2).$$
  • Except for a few combinations of the system parameters  $z_1$,  $T_1$,  $z_2$  and  $T_2$&,nbsp; this channel will result in linear distortions.
  • There is a distortion-free channel at hand only if not a single input signal is distorted by it. This means:   Even if the channel is distorting, there may be special cases where indeed  $y(t) = \alpha \cdot x(t - \tau)$  applies.


The test signals applied to the system input are:

  • Dirac comb  $x_1(t)$  at a time interval of  $T_0 = 1 \ \rm ms$ whose spectral function  $X_1(f)$  is also a Dirac comb with an interval of  $f_0 = 1/T_0 = 1 \ \rm kHz$:
$$x_1(t) = \sum_{n = - \infty}^{+\infty} \delta ( t - n \cdot T_0) ,\hspace{0.5cm} X_1(f) = T_0 \cdot \sum_{k = - \infty}^{+\infty} \delta ( f - k \cdot f_0) ,$$
  • a cosine signal with frequency  $f_2 = 250 \ \rm Hz$:
$$x_2(t) = \cos(2 \pi \cdot f_2 \cdot t) ,$$
  • the sum of two cosine signals with frequencies  $f_2 = 250 \ \rm Hz$  and  $f_3 = 1250 \ \rm Hz$:
$$x_3(t) = \cos(2 \pi \cdot f_2 \cdot t) + \cos(2 \pi \cdot f_3 \cdot t) .$$





Please note:

  • To spare you calculations the result for the parameter set  $\big [z_1 = 1$,  $T_1 = 0$,  $z_2 =0.5$,  $T_2 = 1 \ \rm ms\big ]$  is given:
$$|H(f = f_2)| = |H(f = f_3)| = \sqrt{1.25} \approx 1.118, \; \; \; \; b(f = f_2) = b(f = f_3) = \arctan (0.5) \approx 0.464.$$


Questions

1

Which of the following statements are true?

The parameter set  $\big[z_1 = 1$, $T_1 = 0$, $z_2 =0 \big]$  is the only possible one to describe the ideal channel.
Any distortion-free channel is captured by the two combinations  $\big[z_1 \ne 0, \; z_2 = 0 \big]$  or  $\big[z_1 = 0, \; z_2 \ne 0 \big]$ .
The values  $\big[z_1 \ne 0\big]$  and  $\big[z_2 \ne 0\big]$  result in a distortion-free channel if  $T_1$  and  $T_2$  are optimally adjusted.

2

The following holds: $\big[z_1 = 1$,  $T_1 = 0$,  $z_2 =0.5$,  $T_2 = 1 \ \rm ms\big ]$.  Compute the frequency response  $H(f)$  of this channel.
What are the values at multiples of  $1 \ \rm kHz$?

${\rm Re}\big[H(f = n \cdot 1 \ {\rm kHz})\big] \ = \ $

${\rm Im}\big[H(f = n \cdot 1 \ {\rm kHz})\big] \ = \ $

3

The Dirac comb $x_1(t)$  is applied to the input of the system with the same parameters as in subtask  (2) .
Which statements are true for the output signal $y_1(t)$ ?

$y_1(t)$  is attenuated/amplified by a constant compared to $x_1(t)$ .
$y_1(t)$  is shifted with respect to $x_1(t)$ .
$y_1(t)$  exhibits distortions with respect to $x_1(t)$ .

4

Compute the signal $y_2(t)$  as the system response to the cosine signal $x_2(t)$.   What is the signal value at time $t = 0$ ?

$y_2(t = 0) \ = \ $

5

Which statements are true regarding the signals $x_3(t)$  and  $y_3(t)$ ?

$y_3(t)$  does not exhibit any distortions with respect to $x_3(t)$ .
$y_3(t)$  exhibits attenuation distortions with respect to $x_3(t)$ .
$y_3(t)$  exhibits phase distortions with respect to $x_3(t)$ .


Solutions

(1)  Statements 1 and 2 are correct:

  • Mit  $z_1 = 1$, $T_1 = 0$, $z_2 =0$  ist  $h(t) = \delta(t)$  und dementsprechend  $H(f) = 1$, so dass stets  $y(t) = x(t)$  gelten wird.
  • Each distortion-free channel impulse response $h(t)$  consists of a single Dirac function, for example at $t = T_1$.
  • This case is accounted for in the model by $z_2 =0$ . Thus, the frequency response is:
$$H(f)= z_1\cdot {\rm e}^{-{\rm j}\cdot \hspace{0.05cm}2 \pi f T_1} \ \Rightarrow \ y(t) = z_1 \cdot x(t- T_1).$$
  • Dagegen wird der Kanal immer dann zu linearen Verzerrungen führen, wenn gleichzeitig  $z_1$  und  $z_2$  von Null verschieden sind.


(2)  Die Fouriertransformation der Impulsantwort  $h(t)$  führt auf die Gleichung:

$$H(f) = z_1\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_1}+ z_2\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_2} .$$
  • Mit  $z_1 = 1$, $T_1 = 0$, $z_2 =0.5$  und  $T_2 = 1 \ \rm ms$  erhält man daraus:
$$H(f) =1 + 0.5 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_2}.$$
  • Aufgeschlüsselt nach Real– und Imaginärteil liefert dies:
$${\rm Re}\big[H(f)\big] = 1 + 0.5 \cdot \cos(2 \pi f \cdot 1\,{\rm ms}) \ \Rightarrow \ \underline{{\rm Re}[H(f = f_1 =1 \ \rm kHz)] = 1.5}, $$
$${\rm Im}\big[H(f)\big] = -0.5 \cdot \sin(2 \pi f \cdot 1\,{\rm ms}) \ \Rightarrow \ \underline{{\rm Im}\big[H(f = f_1 =1 \ \rm kHz)\big] = 0}, $$


(3)  Richtig ist nur die erste Antwort:

  • Aus  (2)  folgt für alle Vielfachen von  $f_1 =1 \ \rm kHz$  die Betragsfunktion  $|H(f)| = 1.5$  und die Phasenfunktion  $b(f) \equiv 0$.
  • Damit ist für diese diskreten Frequenzwerte auch die Phasenlaufzeit jeweils Null.
  • Da aber das Spektrum  $X_1(f)$  des Diracpulses genau bei diesen Frequenzen Spektrallinien aufweist, gilt  $y_1(t) = 1.5 \cdot x_1(t)$.


(4)  Die Betragsfunktion lautet:

$$|H(f)| = \sqrt{{\rm Re}[H(f)]^2 + {\rm Im}[H(f)]^2} $$
$$\Rightarrow \; |H(f)| = \sqrt{1 + 0.25 \cdot \cos^2(2 \pi f \cdot T_2)+ \cos(2 \pi f \cdot T_2) + 0.25 \cdot \sin^2(2 \pi f \cdot T_2)} = \sqrt{1.25 + \cos(2 \pi f \cdot T_2) }.$$
  • Für die Frequenz  $f_2 =0.25 \ \rm kHz$  erhält man somit:
$$|H(f)| = \sqrt{1.25 + \cos(\frac{\pi}{2} ) }= \sqrt{1.25} = 1.118.$$
  • Die Phasenfunktion lautet allgemein bzw. bei der Frequenz  $f_2 =0.25 \ \rm kHz$:
$$b(f) = - {\rm arctan}\hspace{0.1cm}\frac{{\rm Im}[H(f)]}{{\rm Re}[H(f)]} = - {\rm arctan}\hspace{0.1cm}\frac{-0.5 \cdot \sin(2 \pi f T_2)}{1+0.5 \cdot \cos(2 \pi f T_2)},$$
$$b(f = f_2) = - {\rm arctan}\hspace{0.1cm}\frac{-0.5 \cdot \sin( \pi/2)}{1+0.5 \cdot \cos(\pi/2)}={\rm arctan}\hspace{0.1cm}\frac{0.5}{1} = 0.464.$$
  • Damit beträgt die Phasenlaufzeit für diese Frequenz:
$$\tau_2 = \frac {b(f_2)}{2 \pi f_2} = \frac {0.464}{2 \pi \cdot 0.25\,{\rm kHz}} \approx 0.3\,{\rm ms},$$
  • Für das Ausgangssignal gilt somit:
$$y_2(t) = 1.118 \cdot \cos(2 \pi \cdot 0.25\,{\rm kHz}\cdot (t - 0.3\,{\rm ms})).$$
  • Der Signalwert zum Nullzeitpunkt ist somit:
$$y_2(t=0) = 1.118 \cdot \cos(-2 \pi \cdot 0.25\,{\rm kHz} \cdot 0.3\,{\rm ms}) \approx 1.118 \cdot 0.891 \hspace{0.15cm}\underline{= 0.996}.$$


(5)  Beide Frequenzen haben den gleichen Dämpfungsfaktor  $\alpha = 1.118$ , daher sind keine Dämpfungsverzerrungen festzustellen.

  • Mit  $f_3 = 1.25 \ \rm kHz$  und  $T_2 = 1 \ \rm ms$  ergibt sich für die Phasenfunktion:
$$b(f = f_3) = - {\rm arctan}\hspace{0.1cm}\frac{-0.5 \cdot \sin( 2.5 \pi)}{1+0.5 \cdot \cos(2.5 \pi)}= 0.464 = b(f = f_2),$$
also genau der gleiche Wert wie bei der Frequenz  $f_2 = 0.25 \ \rm kHz$.
  • Trotzdem kommt es aber nun zu Phasenverzerrungen, da für  $f_3$  die Phasenlaufzeit nur mehr  $\tau = 60 \ µ \rm s$  beträgt.
  • Für das Ausgangssignal kann also geschrieben werden:
$$y_3(t) = 1.118 \cdot \cos(2 \pi f_2 \cdot (t - 0.3\,{\rm ms}) + 1.118 \cdot \cos(2 \pi f_3 \cdot (t - 0.06\,{\rm ms})$$
$$\Rightarrow \; \; y_3(t) = 1.118 \cdot \cos(2 \pi f_2 \cdot t - 27^\circ) + 1.118 \cdot \cos(2 \pi f_3 \cdot t - 27^\circ).$$

Richtig ist demnach die Antwort 3:

  • Es gibt also Phasenverzerrungen, obwohl für beide Schwingungen  $\varphi_2 = \varphi_3= 27^\circ$  gilt.
  • Damit keine Phasenverzerrungen auftreten, müssten
    • die Phasenlaufzeiten $\tau_2$ und $\tau_3$ gleich sein, und
    • die Phasenwerte  $\varphi_2$  und  $\varphi_3$  linear mit den zugehörigen Frequenzen ansteigen.