Difference between revisions of "Aufgaben:Exercise 2.6: Two-Way Channel"

From LNTwww
 
Line 77: Line 77:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; <u>Statements 1 and 2</u> are correct:
+
'''(1)'''&nbsp; <u>Statements 1 and 2</u>&nbsp; are correct:
*$h(t) = \delta(t)$&nbsp; is true with&nbsp;$z_1 = 1$, $T_1 = 0$ and $z_2 =0$&nbsp; and correspondingly&nbsp;$H(f) = 1$ so that&nbsp;$y(t) = x(t)$&nbsp; will always hold.  
+
*$h(t) = \delta(t)$&nbsp; is true with&nbsp; $z_1 = 1$,&nbsp; $T_1 = 0$&nbsp; and&nbsp; $z_2 =0$&nbsp; and&nbsp; correspondingly&nbsp; $H(f) = 1$&nbsp; so that&nbsp; $y(t) = x(t)$&nbsp; will always hold.  
*Each distortion-free channel impulse response&nbsp;$h(t)$&nbsp; consists of a single Dirac function, for example at&nbsp;$t = T_1$.  
+
*Each distortion-free channel impulse response&nbsp; $h(t)$&nbsp; consists of a single Dirac function,&nbsp; for example at&nbsp; $t = T_1$.  
*This case is accounted for in the model by&nbsp;$z_2 =0$&nbsp;. Thus, the frequency response is:
+
*This case is accounted for in the model by&nbsp; $z_2 =0$.&nbsp; Thus, the frequency response is:
 
:$$H(f)=  z_1\cdot {\rm e}^{-{\rm j}\cdot \hspace{0.05cm}2 \pi f T_1} \ \Rightarrow \ y(t) = z_1 \cdot x(t- T_1).$$
 
:$$H(f)=  z_1\cdot {\rm e}^{-{\rm j}\cdot \hspace{0.05cm}2 \pi f T_1} \ \Rightarrow \ y(t) = z_1 \cdot x(t- T_1).$$
*In contrast, the channel will lead to linear distortions whenever&nbsp;$z_1$&nbsp; and&nbsp;$z_2$&nbsp; are simultaneously non-zero.  
+
*In contrast, the channel will lead to linear distortions whenever&nbsp; $z_1$&nbsp; and&nbsp; $z_2$&nbsp; are simultaneously non-zero.  
  
  
  
'''(2)'''&nbsp; The Fourier transformation of the impulse response&nbsp;$h(t)$&nbsp; results in the equation:
+
'''(2)'''&nbsp; The Fourier transform of the impulse response&nbsp; $h(t)$&nbsp; results in the equation:
 
:$$H(f) =  z_1\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_1}+ z_2\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_2}
 
:$$H(f) =  z_1\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_1}+ z_2\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_2}
 
   .$$
 
   .$$
  
*The following is obtained with&nbsp;$z_1 = 1$, $T_1 = 0$, $z_2 =0.5$&nbsp; and&nbsp;$T_2 = 1 \ \rm ms$&nbsp;:
+
*The following is obtained with&nbsp; $z_1 = 1$,&nbsp; $T_1 = 0$,&nbsp; $z_2 =0.5$&nbsp; and&nbsp; $T_2 = 1 \ \rm ms$:
 
:$$H(f) =1 + 0.5 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_2}.$$
 
:$$H(f) =1 + 0.5 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_2}.$$
  
*Broken down by real and imaginary part, this yields:
+
*Broken down by real and imaginary part,&nbsp; this yields:
 
:$${\rm Re}\big[H(f)\big] = 1 + 0.5 \cdot \cos(2 \pi f \cdot 1\,{\rm  ms}) \ \Rightarrow \ \underline{{\rm Re}[H(f = f_1 =1 \ \rm kHz)] = 1.5}, $$
 
:$${\rm Re}\big[H(f)\big] = 1 + 0.5 \cdot \cos(2 \pi f \cdot 1\,{\rm  ms}) \ \Rightarrow \ \underline{{\rm Re}[H(f = f_1 =1 \ \rm kHz)] = 1.5}, $$
 
:$${\rm Im}\big[H(f)\big] = -0.5 \cdot \sin(2 \pi f \cdot 1\,{\rm  ms}) \ \Rightarrow \ \underline{{\rm Im}\big[H(f = f_1 =1 \ \rm kHz)\big] = 0}, $$
 
:$${\rm Im}\big[H(f)\big] = -0.5 \cdot \sin(2 \pi f \cdot 1\,{\rm  ms}) \ \Rightarrow \ \underline{{\rm Im}\big[H(f = f_1 =1 \ \rm kHz)\big] = 0}, $$
  
  
'''(3)'''&nbsp; The <u>first answer</u> is the only correct one:
+
'''(3)'''&nbsp; The&nbsp; <u>first answer</u>&nbsp; is the only correct one:
*From&nbsp; '''(2)'''&nbsp; it follows that the absolute value function is&nbsp;$|H(f)| = 1.5$&nbsp; and the phase function &nbsp;$b(f) \equiv 0$ for all multiples of&nbsp;$f_1 =1 \ \rm kHz$&nbsp;.  
+
*From&nbsp; '''(2)'''&nbsp; it follows the absolute value function is&nbsp; $|H(f)| = 1.5$&nbsp; and the phase function &nbsp; $b(f) \equiv 0$&nbsp; for all multiples of&nbsp; $f_1 =1 \ \rm kHz$ &nbsp; &rArr; &nbsp; $f= n \cdot f_1$.  
 
*Thus, the phase delay time is also zero in each case for these discrete frequency values.
 
*Thus, the phase delay time is also zero in each case for these discrete frequency values.
*But since the spectrum&nbsp;$X_1(f)$&nbsp; of the Dirac comb has spectral lines exactly at these frequencies, &nbsp;$y_1(t) = 1.5 \cdot x_1(t)$ holds.
+
*But since the spectrum&nbsp; $X_1(f)$&nbsp; of the Dirac comb has spectral lines exactly at these frequencies, &nbsp; $y_1(t) = 1.5 \cdot x_1(t)$&nbsp; holds.
 
   
 
   
  
Line 110: Line 110:
 
   = \sqrt{1.25 +  \cos(2 \pi f \cdot T_2) }.$$
 
   = \sqrt{1.25 +  \cos(2 \pi f \cdot T_2) }.$$
  
*Thus, the following is obtained for the frequency&nbsp;$f_2 =0.25 \ \rm kHz$&nbsp;:
+
*Thus, the following is obtained for the frequency&nbsp; $f_2 =0.25 \ \rm kHz$:
 
:$$|H(f)| = \sqrt{1.25 +  \cos(\frac{\pi}{2} ) }= \sqrt{1.25} = 1.118.$$
 
:$$|H(f)| = \sqrt{1.25 +  \cos(\frac{\pi}{2} ) }= \sqrt{1.25} = 1.118.$$
  
Line 123: Line 123:
 
*Thus, the phase delay time for this frequency is:
 
*Thus, the phase delay time for this frequency is:
 
:$$\tau_2 = \frac {b(f_2)}{2 \pi f_2}  = \frac {0.464}{2 \pi \cdot
 
:$$\tau_2 = \frac {b(f_2)}{2 \pi f_2}  = \frac {0.464}{2 \pi \cdot
0.25\,{\rm  kHz}} \approx 0.3\,{\rm  ms},$$
+
0.25\,{\rm  kHz}} \approx 0.3\,{\rm  ms}.$$
  
 
*Hence, the following holds for the output signal:
 
*Hence, the following holds for the output signal:
Line 134: Line 134:
  
  
'''(5)'''&nbsp; Both frequencies have the same attenuation factor&nbsp;$\alpha = 1.118$&nbsp;. Therefore, no attenuation distortions are observed.  
+
'''(5)'''&nbsp; Both frequencies have the same attenuation factor&nbsp; $\alpha = 1.118$&nbsp;. Therefore, no attenuation distortions are observed.  
  
*The following is obtained for the phase function with&nbsp;$f_3 = 1.25 \ \rm kHz$&nbsp; and &nbsp;$T_2 = 1 \ \rm ms$&nbsp;:
+
*The following is obtained for the phase function with&nbsp; $f_3 = 1.25 \ \rm kHz$&nbsp; and &nbsp; $T_2 = 1 \ \rm ms$&nbsp;:
 
:$$b(f = f_3)  = - {\rm arctan}\hspace{0.1cm}\frac{-0.5 \cdot \sin(
 
:$$b(f = f_3)  = - {\rm arctan}\hspace{0.1cm}\frac{-0.5 \cdot \sin(
 
2.5 \pi)}{1+0.5 \cdot \cos(2.5 \pi)}= 0.464 = b(f = f_2),$$
 
2.5 \pi)}{1+0.5 \cdot \cos(2.5 \pi)}= 0.464 = b(f = f_2),$$
  
:so exactly the same value as for the frequency&nbsp;$f_2 = 0.25 \ \rm kHz$.  
+
:so exactly the same value as for the frequency&nbsp; $f_2 = 0.25 \ \rm kHz$.  
*Despite this, however, phase distortions now occur since for&nbsp;$f_3$&nbsp; the phase delay time is only&nbsp;$\tau  = 60 \  &micro; \rm s$&nbsp; anymore.
+
*Despite this,&nbsp; however,&nbsp; phase distortions now occur since for&nbsp; $f_3$&nbsp; the phase delay time is only&nbsp; $\tau  = 60 \  &micro; \rm s$&nbsp; anymore.
  
*So, the following can be formulated for the output signal:
+
*So,&nbsp; the following can be formulated for the output signal:
 
:$$y_3(t) = 1.118 \cdot \cos(2 \pi f_2 \cdot (t - 0.3\,{\rm  ms}) +
 
:$$y_3(t) = 1.118 \cdot \cos(2 \pi f_2 \cdot (t - 0.3\,{\rm  ms}) +
 
1.118
 
1.118
Line 150: Line 150:
 
\cos(2 \pi f_3 \cdot  t - 27^\circ).$$
 
\cos(2 \pi f_3 \cdot  t - 27^\circ).$$
  
Accordingly, the correct <u>answer is 3</u>:
+
Accordingly, the correct&nbsp; <u>answer is 3</u>:
*So, there are phase distortions although for both oscillations,&nbsp;$\varphi_2 = \varphi_3= 27^\circ$&nbsp; holds.  
+
*So, there are phase distortions although for both oscillations,&nbsp; $\varphi_2 = \varphi_3= 27^\circ$&nbsp; holds.  
 
*To avoid phase distortions  
 
*To avoid phase distortions  
**the phase delay times $\tau_2$ and $\tau_3$ would have to be equal and
+
**the phase delay times&nbsp; $\tau_2$&nbsp; and&nbsp; $\tau_3$&nbsp; would have to be equal and
**the phase values&nbsp;$\varphi_2$&nbsp; and &nbsp;$\varphi_3$&nbsp; would have to increase linearly with the corresponding frequencies.
+
**the phase values&nbsp; $\varphi_2$&nbsp; and&nbsp; $\varphi_3$&nbsp; would have to increase linearly with the corresponding frequencies.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 11:29, 6 October 2021

Impulse response of the two-way channel

The so-called  "two-way channel"  is characterised by the following impulse response  $($with  $T_1 < T_2)$:

$$h(t) = z_1 \cdot \delta ( t - T_1) + z_2 \cdot \delta ( t - T_2).$$
  • Except for a few combinations of the system parameters  $z_1$,  $T_1$,  $z_2$  and  $T_2$,  this channel will result in linear distortions.
  • There is a distortion-free channel at hand only if not a single input signal is distorted by it.
  • This means:   Even if the two-way channel is per se distorting,  there may be special cases where indeed  $y(t) = \alpha \cdot x(t - \tau)$.


The test signals applied to the system input are:

  • Dirac comb  $x_1(t)$  at a time interval of  $T_0 = 1 \ \rm ms$,  whose spectral function  $X_1(f)$  is also a Dirac comb with an interval of  $f_0 = 1/T_0 = 1 \ \rm kHz$:
$$x_1(t) = \sum_{n = - \infty}^{+\infty} \delta ( t - n \cdot T_0) ,\hspace{0.5cm} X_1(f) = T_0 \cdot \sum_{k = - \infty}^{+\infty} \delta ( f - k \cdot f_0) ,$$
  • a cosine signal with frequency  $f_2 = 250 \ \rm Hz$:
$$x_2(t) = \cos(2 \pi \cdot f_2 \cdot t) ,$$
  • the sum of two cosine signals with frequencies  $f_2 = 250 \ \rm Hz$  and  $f_3 = 1250 \ \rm Hz$:
$$x_3(t) = \cos(2 \pi \cdot f_2 \cdot t) + \cos(2 \pi \cdot f_3 \cdot t) .$$





Please note:

  • To spare you calculations  the result for the parameter set  $\big [z_1 = 1$,  $T_1 = 0$,  $z_2 =0.5$,  $T_2 = 1 \ \rm ms\big ]$  is given:
$$|H(f = f_2)| = |H(f = f_3)| = \sqrt{1.25} \approx 1.118, \; \; \; \; b(f = f_2) = b(f = f_3) = \arctan (0.5) \approx 0.464.$$


Questions

1

Which of the following statements are true?

The parameter set  $\big[z_1 = 1$, $T_1 = 0$, $z_2 =0 \big]$  is the only possible one to describe the ideal channel.
Any distortion-free channel is captured by the two combinations  $\big[z_1 \ne 0, \; z_2 = 0 \big]$  or  $\big[z_1 = 0, \; z_2 \ne 0 \big]$ .
The values  $\big[z_1 \ne 0\big]$  and  $\big[z_2 \ne 0\big]$  result in a distortion-free channel  if  $T_1$  and  $T_2$  are optimally adjusted.

2

The following holds: $\big[z_1 = 1$,  $T_1 = 0$,  $z_2 =0.5$,  $T_2 = 1 \ \rm ms\big ]$.  Compute the frequency response  $H(f)$  of this channel.
What are the values at multiples of  $1 \ \rm kHz$?

${\rm Re}\big[H(f = n \cdot 1 \ {\rm kHz})\big] \ = \ $

${\rm Im}\big[H(f = n \cdot 1 \ {\rm kHz})\big] \ = \ $

3

The Dirac comb  $x_1(t)$  is applied to the input of the system with the same parameters as in subtask  (2) .
Which statements are true for the output signal  $y_1(t)$ ?

$y_1(t)$  is attenuated/amplified by a constant compared to $x_1(t)$ .
$y_1(t)$  is shifted with respect to $x_1(t)$ .
$y_1(t)$  exhibits distortions with respect to $x_1(t)$ .

4

Compute the signal  $y_2(t)$  as the system response to the cosine signal  $x_2(t)$.   What is the signal value at time  $t = 0$ ?

$y_2(t = 0) \ = \ $

5

Which statements are true regarding the signals  $x_3(t)$  and   $y_3(t)$ ?

$y_3(t)$  does not exhibit any distortions with respect to  $x_3(t)$ .
$y_3(t)$  exhibits attenuation distortions with respect to  $x_3(t)$ .
$y_3(t)$  exhibits phase distortions with respect to  $x_3(t)$ .


Solution

(1)  Statements 1 and 2  are correct:

  • $h(t) = \delta(t)$  is true with  $z_1 = 1$,  $T_1 = 0$  and  $z_2 =0$  and  correspondingly  $H(f) = 1$  so that  $y(t) = x(t)$  will always hold.
  • Each distortion-free channel impulse response  $h(t)$  consists of a single Dirac function,  for example at  $t = T_1$.
  • This case is accounted for in the model by  $z_2 =0$.  Thus, the frequency response is:
$$H(f)= z_1\cdot {\rm e}^{-{\rm j}\cdot \hspace{0.05cm}2 \pi f T_1} \ \Rightarrow \ y(t) = z_1 \cdot x(t- T_1).$$
  • In contrast, the channel will lead to linear distortions whenever  $z_1$  and  $z_2$  are simultaneously non-zero.


(2)  The Fourier transform of the impulse response  $h(t)$  results in the equation:

$$H(f) = z_1\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_1}+ z_2\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_2} .$$
  • The following is obtained with  $z_1 = 1$,  $T_1 = 0$,  $z_2 =0.5$  and  $T_2 = 1 \ \rm ms$:
$$H(f) =1 + 0.5 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_2}.$$
  • Broken down by real and imaginary part,  this yields:
$${\rm Re}\big[H(f)\big] = 1 + 0.5 \cdot \cos(2 \pi f \cdot 1\,{\rm ms}) \ \Rightarrow \ \underline{{\rm Re}[H(f = f_1 =1 \ \rm kHz)] = 1.5}, $$
$${\rm Im}\big[H(f)\big] = -0.5 \cdot \sin(2 \pi f \cdot 1\,{\rm ms}) \ \Rightarrow \ \underline{{\rm Im}\big[H(f = f_1 =1 \ \rm kHz)\big] = 0}, $$


(3)  The  first answer  is the only correct one:

  • From  (2)  it follows the absolute value function is  $|H(f)| = 1.5$  and the phase function   $b(f) \equiv 0$  for all multiples of  $f_1 =1 \ \rm kHz$   ⇒   $f= n \cdot f_1$.
  • Thus, the phase delay time is also zero in each case for these discrete frequency values.
  • But since the spectrum  $X_1(f)$  of the Dirac comb has spectral lines exactly at these frequencies,   $y_1(t) = 1.5 \cdot x_1(t)$  holds.


(4)  The absolute value function is:

$$|H(f)| = \sqrt{{\rm Re}[H(f)]^2 + {\rm Im}[H(f)]^2} $$
$$\Rightarrow \; |H(f)| = \sqrt{1 + 0.25 \cdot \cos^2(2 \pi f \cdot T_2)+ \cos(2 \pi f \cdot T_2) + 0.25 \cdot \sin^2(2 \pi f \cdot T_2)} = \sqrt{1.25 + \cos(2 \pi f \cdot T_2) }.$$
  • Thus, the following is obtained for the frequency  $f_2 =0.25 \ \rm kHz$:
$$|H(f)| = \sqrt{1.25 + \cos(\frac{\pi}{2} ) }= \sqrt{1.25} = 1.118.$$
  • The phase function is generally or at the frequency  $f_2 =0.25 \ \rm kHz$:
$$b(f) = - {\rm arctan}\hspace{0.1cm}\frac{{\rm Im}[H(f)]}{{\rm Re}[H(f)]} = - {\rm arctan}\hspace{0.1cm}\frac{-0.5 \cdot \sin(2 \pi f T_2)}{1+0.5 \cdot \cos(2 \pi f T_2)},$$
$$b(f = f_2) = - {\rm arctan}\hspace{0.1cm}\frac{-0.5 \cdot \sin( \pi/2)}{1+0.5 \cdot \cos(\pi/2)}={\rm arctan}\hspace{0.1cm}\frac{0.5}{1} = 0.464.$$
  • Thus, the phase delay time for this frequency is:
$$\tau_2 = \frac {b(f_2)}{2 \pi f_2} = \frac {0.464}{2 \pi \cdot 0.25\,{\rm kHz}} \approx 0.3\,{\rm ms}.$$
  • Hence, the following holds for the output signal:
$$y_2(t) = 1.118 \cdot \cos(2 \pi \cdot 0.25\,{\rm kHz}\cdot (t - 0.3\,{\rm ms})).$$
  • The signal value at zero-time is therefore:
$$y_2(t=0) = 1.118 \cdot \cos(-2 \pi \cdot 0.25\,{\rm kHz} \cdot 0.3\,{\rm ms}) \approx 1.118 \cdot 0.891 \hspace{0.15cm}\underline{= 0.996}.$$


(5)  Both frequencies have the same attenuation factor  $\alpha = 1.118$ . Therefore, no attenuation distortions are observed.

  • The following is obtained for the phase function with  $f_3 = 1.25 \ \rm kHz$  and   $T_2 = 1 \ \rm ms$ :
$$b(f = f_3) = - {\rm arctan}\hspace{0.1cm}\frac{-0.5 \cdot \sin( 2.5 \pi)}{1+0.5 \cdot \cos(2.5 \pi)}= 0.464 = b(f = f_2),$$
so exactly the same value as for the frequency  $f_2 = 0.25 \ \rm kHz$.
  • Despite this,  however,  phase distortions now occur since for  $f_3$  the phase delay time is only  $\tau = 60 \ µ \rm s$  anymore.
  • So,  the following can be formulated for the output signal:
$$y_3(t) = 1.118 \cdot \cos(2 \pi f_2 \cdot (t - 0.3\,{\rm ms}) + 1.118 \cdot \cos(2 \pi f_3 \cdot (t - 0.06\,{\rm ms})$$
$$\Rightarrow \; \; y_3(t) = 1.118 \cdot \cos(2 \pi f_2 \cdot t - 27^\circ) + 1.118 \cdot \cos(2 \pi f_3 \cdot t - 27^\circ).$$

Accordingly, the correct  answer is 3:

  • So, there are phase distortions although for both oscillations,  $\varphi_2 = \varphi_3= 27^\circ$  holds.
  • To avoid phase distortions
    • the phase delay times  $\tau_2$  and  $\tau_3$  would have to be equal and
    • the phase values  $\varphi_2$  and  $\varphi_3$  would have to increase linearly with the corresponding frequencies.