Difference between revisions of "Aufgaben:Exercise 2.7Z: Coherence Bandwidth of the LTI Two-Path Channel"

From LNTwww
Line 5: Line 5:
 
For the GWSSUS–model, two parameters are given, which both statistically capture the resulting delay  $\tau$ . More information on the topic „multipath propagation” can be found in section  [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell#Simulation_gem.C3.A4.C3.9F_dem_GWSSUS.E2.80.93Modell| Simulation gemäß dem GWSSUS–Modell]]  of the theory part.
 
For the GWSSUS–model, two parameters are given, which both statistically capture the resulting delay  $\tau$ . More information on the topic „multipath propagation” can be found in section  [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell#Simulation_gem.C3.A4.C3.9F_dem_GWSSUS.E2.80.93Modell| Simulation gemäß dem GWSSUS–Modell]]  of the theory part.
 
* The &nbsp;<b>delay spread</b>&nbsp; $T_{\rm V}$&nbsp; is by definition equal to the standard deviation of the random variable &nbsp;$\tau$. <br>This can be determined from the probability density&nbsp; $f_{\rm V}(\tau)$&nbsp;. The PDF&nbsp; $f_{\rm V}(\tau)$&nbsp; has the same shape as the delay power density spectrum&nbsp; ${\it \Phi}_{\rm V}(\tau)$.  
 
* The &nbsp;<b>delay spread</b>&nbsp; $T_{\rm V}$&nbsp; is by definition equal to the standard deviation of the random variable &nbsp;$\tau$. <br>This can be determined from the probability density&nbsp; $f_{\rm V}(\tau)$&nbsp;. The PDF&nbsp; $f_{\rm V}(\tau)$&nbsp; has the same shape as the delay power density spectrum&nbsp; ${\it \Phi}_{\rm V}(\tau)$.  
* The &nbsp;<b>coherence bandwidth</b>&nbsp; $B_{\rm K}$&nbsp; describes the same situation in the frequency domain. <br> This is implicitly defined by the frequency&ndash;correlation function&nbsp; $\varphi_{\rm F}(\delta f)$&nbsp; defined as the&nbsp; $\delta f$&ndash;value at which its amount first dropped to half:
+
* The &nbsp;<b>coherence bandwidth</b>&nbsp; $B_{\rm K}$&nbsp; describes the same situation in the frequency domain. <br> It is defined as the value of $\delta f$ at which the magnitude of the frequency correlation function&nbsp; $\varphi_{\rm F}(\delta f)$&nbsp; first drops to hlf its maximum value:
$$$\varphi_{\rm F}(\Delta f = B_{\rm K})| \stackrel {!}{=} {1}/{2} \cdot |\varphi_{\rm F}(\delta f = 0)| \hspace{0.05cm}.$$
+
:$$|\varphi_{\rm F}(\Delta f = B_{\rm K})| \stackrel {!}{=} {1}/{2} \cdot |\varphi_{\rm F}(\Delta f = 0)| \hspace{0.05cm}.$$
  
The connection between&nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp; and&nbsp; $\varphi_{\rm F}(\delta f)$&nbsp; is given by the Fourier transform:
+
The relationship between&nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp; and&nbsp; $\varphi_{\rm F}(\delta f)$&nbsp; is given by the Fourier transform:
$$\varphi_{\rm F}(\delta f)
+
:$$\varphi_{\rm F}(\Delta f)
  \{\hspace{0.2cm} {\bullet\!} {\hspace{0.2cm} {\it \Phi}_{\rm V}(\tau)\hspace{0.05cm}.$
+
  \hspace{0.2cm} {\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} {\it \Phi}_{\rm V}(\tau)\hspace{0.05cm}.$$
  
*Both definitions are only partially suitable for a time invariant channel.  
+
*Both definitions are only partially suitable for a time-invariant channel.  
*Often one uses for a time invariant two-way channel (i.e. with constant path weights according to the above graphic) as an approximation for the coherence bandwidth:
+
*For a time invariant two-path channel (i.e. one with constant path weights according to the above graph), the following approximation for the coherence bandwidth is often used:
 
:$$B_{\rm K}\hspace{0.01cm}' = \frac{1}{\frac_{\rm max} - \frac_{\rm min}} \hspace{0.05cm}.$$
 
:$$B_{\rm K}\hspace{0.01cm}' = \frac{1}{\frac_{\rm max} - \frac_{\rm min}} \hspace{0.05cm}.$$
  
  
 
In this task we want to clarify
 
In this task we want to clarify
* why there are different definitions for the coherence band in the literature,
+
* why there are different definitions for the coherence bandwidth in the literature,
 
* which connection exists between&nbsp; $B_{\rm K}$&nbsp; and&nbsp; $B_{\rm K}\hspace{0.01cm}'$&nbsp; and
 
* which connection exists between&nbsp; $B_{\rm K}$&nbsp; and&nbsp; $B_{\rm K}\hspace{0.01cm}'$&nbsp; and
 
* which definitions make sense for which boundary conditions.
 
* which definitions make sense for which boundary conditions.
Line 36: Line 36:
 
===Questionnaire===
 
===Questionnaire===
 
<quiz display=simple>
 
<quiz display=simple>
{Which coherence bandwidth approximations&nbsp; $B_{\rm K}\hspace{0.01cm}'$&nbsp; are there for channel &nbsp;$\rm A$&nbsp; and &nbsp;$\rm B$?
+
{What is the approximate coherence bandwidth &nbsp; $B_{\rm K}\hspace{0.01cm}'$&nbsp; for channels &nbsp;$\rm A$&nbsp; and &nbsp;$\rm B$?
 
|type="{}"}
 
|type="{}"}
 
Channel &nbsp;${\rm A} \text \ \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' \ = \ ${ 1000 3% } $\ \ \rm kHz$
 
Channel &nbsp;${\rm A} \text \ \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' \ = \ ${ 1000 3% } $\ \ \rm kHz$
 
Channel &nbsp;${\rm B} \text \ \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' \ = \ ${ 1000 3% } $\ \ \rm kHz$
 
Channel &nbsp;${\rm B} \text \ \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' \ = \ ${ 1000 3% } $\ \ \rm kHz$
  
{What is the WDF&nbsp; $f_{\rm V}(\tau)$? $G$&nbsp; indicates the weight of the second path.
+
{Let $G$&nbsp; be the weight of the second path. What is the PDF&nbsp; $f_{\rm V}(\tau)$?
 
|type="()"}
 
|type="()"}
 
- $f_{\rm V}(\tau) = \delta(\tau) + G \cdot \delta(\tau \, &ndash;\tau_0)$,
 
- $f_{\rm V}(\tau) = \delta(\tau) + G \cdot \delta(\tau \, &ndash;\tau_0)$,
Line 47: Line 47:
 
+ $f_{\rm V}(\tau) = 1/(1 + G^2) \cdot \delta(\tau) + G^2/(1 + G^2) \cdot \delta(\tau \, &ndash;\tau_0)$.
 
+ $f_{\rm V}(\tau) = 1/(1 + G^2) \cdot \delta(\tau) + G^2/(1 + G^2) \cdot \delta(\tau \, &ndash;\tau_0)$.
  
{Calculate the multipath propagation&nbsp; $ T_{\rm V}$.
+
{Calculate the delay spread&nbsp; $ T_{\rm V}$.
 
|type="{}"}
 
|type="{}"}
 
Channel &nbsp;${\rm A} \text \ \hspace{0.4cm} T_{\rm V} \ = \ ${ 0.5 3% } $\ \rm &micro; s$
 
Channel &nbsp;${\rm A} \text \ \hspace{0.4cm} T_{\rm V} \ = \ ${ 0.5 3% } $\ \rm &micro; s$
 
Channel &nbsp;${\rm B} \text \ \hspace{0.4cm} T_{\rm V} \ = \ ${ 0.4 3% } $\ \rm &micro; s$
 
Channel &nbsp;${\rm B} \text \ \hspace{0.4cm} T_{\rm V} \ = \ ${ 0.4 3% } $\ \rm &micro; s$
  
{What is the coherence bandwidth&nbsp; $B_{\rm K}$&nbsp; does the channel &nbsp;${\rm A}$&nbsp; have?
+
{What is the coherence bandwidth&nbsp; $B_{\rm K}$&nbsp; of channel &nbsp;${\rm A}$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ It applies&nbsp; $B_{\rm K} = 333 \ \rm kHz$.
+
+ &nbsp; $B_{\rm K} = 333 \ \rm kHz$.
- It is&nbsp; $B_{\rm K} = 500 \ \rm kHz$.
+
- &nbsp; $B_{\rm K} = 500 \ \rm kHz$.
- It applies&nbsp; $B_{\rm K} = 1 \ \rm MHz$.
+
- &nbsp; $B_{\rm K} = 1 \ \rm MHz$.
- $B_{\rm K}$&nbsp; cannot be specified according to this definition.
+
- $B_{\rm K}$&nbsp; cannot be calculated according to this definition.
  
{Which coherence bandwidth&nbsp; $B_{\rm K}$&nbsp; does channel &nbsp;${\rm B}$&nbsp; have?
+
{What is the coherence bandwidth&nbsp; $B_{\rm K}$&nbsp; of channel &nbsp;${\rm B}$&nbsp;?
 
|type="[]"}
 
|type="[]"}
- It applies&nbsp; $B_{\rm K} = 333 \ \rm kHz$.
+
- &nbsp; $B_{\rm K} = 333 \ \rm kHz$.
- It is&nbsp; $B_{\rm K} = 500 \ \rm kHz$.
+
- &nbsp; $B_{\rm K} = 500 \ \rm kHz$.
- It applies&nbsp; $B_{\rm K} = 1 \ \ \rm MHz$.
+
- &nbsp; $B_{\rm K} = 1 \ \ \rm MHz$.
+ $B_{\rm K}$&nbsp; cannot be specified according to this definition.
+
+ $B_{\rm K}$&nbsp; cannot be calculated according to this definition.
 
</quiz>
 
</quiz>
  
 
===Sample solution===
 
===Sample solution===
 
{{{ML-Kopf}}
 
{{{ML-Kopf}}
'''(1)'''&nbsp; For both channels the runtime difference is $\Delta \tau = \tau_{\rm max} \, - \tau_{\rm min} = 1 \ \ \rm &micro; s$.
+
'''(1)'''&nbsp; For both channels, the delay difference is $\Delta \tau = \tau_{\rm max} \, - \tau_{\rm min} = 1 \ \ \rm &micro; s$.
 
* That's why both channels have the same value:
 
* That's why both channels have the same value:
 
$$B_{\rm K}\hspace{0.01cm}' \ \ \underline {= 1000 \ \rm kHz}.$$
 
$$B_{\rm K}\hspace{0.01cm}' \ \ \underline {= 1000 \ \rm kHz}.$$
  
'''(2)'''&nbsp; The graphics refer to the impulse response $h(\tau)$.  
+
'''(2)'''&nbsp; The graphs refer to the impulse response $h(\tau)$.  
*To obtain the delay&ndash;LDS, the weights must be squared:
+
*To obtain the delay&ndash;power density spectrum, the weights must be squared:
$${\it \Phi}_{\rm V}(\tau) = 1^2 \cdot \delta(\tau) + G^2 \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.$
+
:$${\it \Phi}_{\rm V}(\tau) = 1^2 \cdot \delta(\tau) + G^2 \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.$$
  
*The integral over ${\it \Phi}_{\rm V}(\tau)$ is therefore $1 + G^2$.  
+
*The integral of ${\it \Phi}_{\rm V}(\tau)$ is therefore $1 + G^2$.  
*The probability density function (WDF), however, must give the &bdquo;area 1&rdquo; (sum of the two Dirac weights equals $1$). From this follows:
+
*The probability density function (PDF), however, must have &bdquo;area 1&rdquo; (i.e., the sum of the two Dirac weights must be $1$). From this follows:
$$f_{\rm V}(\tau) = \frac{1}{1}{1 + G^2} \cdot \delta(\tau) + \frac{G^2}{1 + G^2} \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.$
+
:$$f_{\rm V}(\tau) = \frac{1}{1 + G^2} \cdot \delta(\tau) + \frac{G^2}{1 + G^2} \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.$$
  
*So only the <u>solution 3</u> is correct.  
+
*So only <u>solution 3</u> is correct.  
*The first proposal does not describe the WDF $f_{\rm V}(\tau)$, but the impulse response $h(\tau)$.  
+
*The first option does not describe the PDF $f_{\rm V}(\tau)$, but the impulse response $h(\tau)$.  
*The second equation specifies the delay &ndash;LDS ${\it \Phi}_{\rm V}(\tau)$.
+
*The second equation specifies the delay &ndash;power spectral density ${\it \Phi}_{\rm V}(\tau)$.
  
  
  
 
'''(3)'''&nbsp; For channel &nbsp;$\rm A$&nbsp; the two impulse weights are equal.  
 
'''(3)'''&nbsp; For channel &nbsp;$\rm A$&nbsp; the two impulse weights are equal.  
*This means that for the mean value $m_{\rm V}$ and the standard deviation $\sigma_{\rm V} = T_{\rm V}$ can be written without a big calculation:
+
*This means that the mean value $m_{\rm V}$ and the standard deviation $\sigma_{\rm V} = T_{\rm V}$ can be computed simply:
$$m_{\rm V} = \frac{\frost_0}{2} {\hspace{0.15cm} {= 0.5\,{\rm &micro; s}}\hspace{0.05cm}
+
:$$m_{\rm V} = \frac{\tau_0}{2} \hspace{0.15cm} {= 0.5\,{\rm &micro; s}}\hspace{0.05cm},
  \hspace{0.2cm}T_{\rm V} = \sigma_{\rm V} =\frac{\tau_0}{2} \hspace{0.15cm}\underline {= 0.5\,{\rm &micro; s}
+
  \hspace{0.2cm}T_{\rm V} = \sigma_{\rm V} =\frac{\tau_0}{2} \hspace{0.15cm}\underline {= 0.5\,{\rm &micro; s}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
For channel &nbsp;$\rm B$&nbsp; the pulse weights are $1/(1+0.5^2) = 0.8$ (for $\tau = 0$) and $0.2$ (for $\tau = 1 \ \rm &micro; s$).
+
For channel &nbsp;$\rm B$&nbsp; the Dirac weights are $1/(1+0.5^2) = 0.8$ (for $\tau = 0$) and $0.2$ (for $\tau = 1 \ \rm &micro; s$).
* This gives for the linear and the quadratic mean value according to the [[Stochastic_Signal Theory/Expected Values_and_Moments#Moment Calculation_as_Sharsh Mean Value|basic Laws]] of statistics:
+
* According to the [[Stochastische_Signaltheorie/Erwartungswerte_und_Momente#Momentenberechnung_als_Scharmittelwert|basic laws]] of statistics, the noncentral first and second order moments are:
 
:$$m_{\rm 1} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.8 \cdot 0 + 0.2 \cdot 1\,{\rm &micro; s} = 0.2\,{\rm &micro; s} \hspace{0.05cm},\hspace{0.5cm}
 
:$$m_{\rm 1} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.8 \cdot 0 + 0.2 \cdot 1\,{\rm &micro; s} = 0.2\,{\rm &micro; s} \hspace{0.05cm},\hspace{0.5cm}
 
m_{\rm 2} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.8 \cdot 0^2 + 0.2 \cdot (1\,{\rm &micro; s})^2 = 0.2\,({\rm &micro; s})^2 \hspace{0.05cm}.$$
 
m_{\rm 2} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.8 \cdot 0^2 + 0.2 \cdot (1\,{\rm &micro; s})^2 = 0.2\,({\rm &micro; s})^2 \hspace{0.05cm}.$$
  
*To get the result you are looking for you can use the [[Stochastic_Signaltheorie/Expected_values_and_Moments#Some_h.C3.A4Used_central_moments| Theorem of Steiner]].
+
*To get the result you are looking for you can use the [[Stochastische_Signaltheorie/Erwartungswerte_und_Momente#Einige_h.C3.A4ufig_benutzte_Zentralmomente| Steiner's Theorem]].
$$\sigma_{\rm V}^2 = m_{\rm 2} - m_{\rm 1}^2 = 0.2\,({\rm &micro; s})^2 - (0.2\,{\rm &micro; s})^2 = 0.16\,({\rm &micro; s})^2
+
:$$\sigma_{\rm V}^2 = m_{\rm 2} - m_{\rm 1}^2 = 0.2\,({\rm &micro; s})^2 - (0.2\,{\rm &micro; s})^2 = 0.16\,({\rm &micro; s})^2
 
   \hspace{0.3cm}\Rightarrow \hspace{0.3cm}T_{\rm V} = \sigma_{\rm V}  \hspace{0.15cm}\underline {= 0.4\,{\rm &micro; s}}\hspace{0.05cm}.$$
 
   \hspace{0.3cm}\Rightarrow \hspace{0.3cm}T_{\rm V} = \sigma_{\rm V}  \hspace{0.15cm}\underline {= 0.4\,{\rm &micro; s}}\hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; The frequency&ndash;correlation function is the Fourier transform of ${\it \Phi}_{\rm V}(\tau) = \delta(\tau) + \delta(\tau \, &ndash; \tau_0)$:
+
'''(4)'''&nbsp; The frequency correlation function is the Fourier transform of ${\it \Phi}_{\rm V}(\tau) = \delta(\tau) + \delta(\tau \, &ndash; \tau_0)$:
$$$\varphi_{\rm F}(\delta f) = 1 + {\rm exp}(-{\rm j} \cdot 2\pi \cdot \delta f \cdot \cdot \tau_0) = 1 + {\rm cos}(2\pi \cdot \delta f \cdot \tau_0) -{\rm j} \cdot {\rm sin}(2\pi \cdot \delta f \cdot \tau_0) $$
+
:$$\varphi_{\rm F}(\Delta f) = 1 + {\rm exp}(-{\rm j} \cdot 2\pi \cdot \Delta f \cdot \tau_0) = 1 + {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) -{\rm j} \cdot {\rm sin}(2\pi \cdot \Delta f \cdot \tau_0) $$
 
[[File:P_ID2186__Mob_Z_2_7d.png|right|frame|Frequency correlation function and coherence bandwidth]]
 
[[File:P_ID2186__Mob_Z_2_7d.png|right|frame|Frequency correlation function and coherence bandwidth]]
$$\Rightarrow \hspace{0.3cm} |\varphi_{\rm F}(\delta f)| = \sqrt{2 + 2 \cdot {\rm cos}(2\pi \cdot \delta f \cdot \cdot \tau_0) }\hspace{0.05cm}.$
+
:$$\Rightarrow \hspace{0.3cm} |\varphi_{\rm F}(\Delta f)| = \sqrt{2 + 2 \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) }\hspace{0.05cm}.$$
  
*The function maximum at $\delta f = 0$ is equal to $2$.  
+
*The maximum at $\delta f = 0$ is equal to $2$.  
*Therefore the equation of determination for $B_{\rm K}$ is
+
*Therefore the equation to determine $B_{\rm K}$ is
 
$$|\varphi_{\rm F}(B_{\rm K})| = 1 \hspace{0.3cm} $$
 
$$|\varphi_{\rm F}(B_{\rm K})| = 1 \hspace{0.3cm} $$
 
$$\Rightarrow \hspace{0.3cm}|\varphi_{\rm F}(B_{\rm K})|^2 = 1
 
$$\Rightarrow \hspace{0.3cm}|\varphi_{\rm F}(B_{\rm K})|^2 = 1
Line 116: Line 116:
 
$$\Rightarrow \hspace{0.3cm}2\pi \cdot B_{\rm K} \cdot \tau_0 = \frac{2\pi}{3}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}B_{\rm K} = \frac{1}{3\tau_0} = 333\,{\rm kHz}\hspace{0.05cm}.$$
 
$$\Rightarrow \hspace{0.3cm}2\pi \cdot B_{\rm K} \cdot \tau_0 = \frac{2\pi}{3}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}B_{\rm K} = \frac{1}{3\tau_0} = 333\,{\rm kHz}\hspace{0.05cm}.$$
  
*Correct is therefore the <u>solution 1</u>. The graphic (blue curve) illustrates the result.
+
*<u>Solution 1</u> is therefore correct. The graph (blue curve) illustrates the result.
  
'''(5)'''&nbsp; For the channel &nbsp;${\rm B}$&nbsp; the corresponding equations are
+
'''(5)'''&nbsp; For channel &nbsp;${\rm B}$&nbsp; the corresponding equations are
$${\it \Phi}_{\rm V}(\tau) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1^2 \cdot \delta(\tau) + (-0.5)^2 \cdot \delta(\tau - \tau_0) \hspace{0.05cm},\hspace{0.05cm}
+
:$${\it \Phi}_{\rm V}(\tau) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1^2 \cdot \delta(\tau) + (-0.5)^2 \cdot \delta(\tau - \tau_0) \hspace{0.05cm},\hspace{0.05cm}
\varphi_{\rm F}(\delta f) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 + 0.25 \cdot {\rm cos}(2\pi \cdot \delta f \cdot \tau_0) -{\rm j} \cdot 0.25 \cdot {\rm sin}(2\pi \cdot \delta f \cdot \tau_0)\hspace{0.05cm},$$
+
\varphi_{\rm F}(\Delta f) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 + 0.25 \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) -{\rm j} \cdot 0.25 \cdot {\rm sin}(2\pi \cdot \Delta f \cdot \tau_0)\hspace{0.05cm},$$
$$$\varphi_{\rm F}(\delta f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm}= \sqrt{\frac{17}{16} + \frac{1}{2} \cdot {\rm cos}(2\pi \cdot \delta f \cdot \tau_0) }\hspace{0.3cm}
+
:$$|\varphi_{\rm F}(\Delta f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm}= \sqrt{\frac{17}{16} + \frac{1}{2} \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) }\hspace{0.3cm}
\Rightarrow \hspace{0.3cm}{\rm Max}\hspace{0.1cm}|\varphi_{\rm F}(\delta f)| = 1.25\hspace{0.05cm},\hspace{0.2cm}{\rm Min}\hspace{0.1cm}|\varphi_{\rm F}(\delta f)| = 0.75\hspace{0.05cm}.$$
+
\Rightarrow \hspace{0.3cm}{\rm Max}\hspace{0.1cm}|\varphi_{\rm F}(\Delta f)| = 1.25\hspace{0.05cm},\hspace{0.2cm}{\rm Min}\hspace{0.1cm}|\varphi_{\rm F}(\Delta f)| = 0.75\hspace{0.05cm}.$$
  
 
*You can see from this result that the $50\%$&ndash;coherence bandwidth cannot be specified here.  
 
*You can see from this result that the $50\%$&ndash;coherence bandwidth cannot be specified here.  
*The correct solution is therefore the <u>solution proposal 4</u>.
+
*Therefore, <u>solution 4</u> is correct.
  
  
Line 133: Line 133:
  
  
You can see from these numerical values that all the information on this is very vague and that the individual &bdquo;coherence bandwidths&rdquo; can differ by factors.
+
You can see from these numerical values that all the information on this is very vague and that the individual &bdquo;coherence bandwidths&rdquo; can be very different.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 19:05, 22 April 2020

Zwei Zweiwegekanäle

For the GWSSUS–model, two parameters are given, which both statistically capture the resulting delay  $\tau$ . More information on the topic „multipath propagation” can be found in section  Simulation gemäß dem GWSSUS–Modell  of the theory part.

  • The  delay spread  $T_{\rm V}$  is by definition equal to the standard deviation of the random variable  $\tau$.
    This can be determined from the probability density  $f_{\rm V}(\tau)$ . The PDF  $f_{\rm V}(\tau)$  has the same shape as the delay power density spectrum  ${\it \Phi}_{\rm V}(\tau)$.
  • The  coherence bandwidth  $B_{\rm K}$  describes the same situation in the frequency domain.
    It is defined as the value of $\delta f$ at which the magnitude of the frequency correlation function  $\varphi_{\rm F}(\delta f)$  first drops to hlf its maximum value:
$$|\varphi_{\rm F}(\Delta f = B_{\rm K})| \stackrel {!}{=} {1}/{2} \cdot |\varphi_{\rm F}(\Delta f = 0)| \hspace{0.05cm}.$$

The relationship between  ${\it \Phi}_{\rm V}(\tau)$  and  $\varphi_{\rm F}(\delta f)$  is given by the Fourier transform:

$$\varphi_{\rm F}(\Delta f) \hspace{0.2cm} {\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} {\it \Phi}_{\rm V}(\tau)\hspace{0.05cm}.$$
  • Both definitions are only partially suitable for a time-invariant channel.
  • For a time invariant two-path channel (i.e. one with constant path weights according to the above graph), the following approximation for the coherence bandwidth is often used:
$$B_{\rm K}\hspace{0.01cm}' = \frac{1}{\frac_{\rm max} - \frac_{\rm min}} \hspace{0.05cm}.$$


In this task we want to clarify

  • why there are different definitions for the coherence bandwidth in the literature,
  • which connection exists between  $B_{\rm K}$  and  $B_{\rm K}\hspace{0.01cm}'$  and
  • which definitions make sense for which boundary conditions.




Notes:



Questionnaire

1

What is the approximate coherence bandwidth   $B_{\rm K}\hspace{0.01cm}'$  for channels  $\rm A$  and  $\rm B$?

Channel  ${\rm A} \text \ \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' \ = \ $

$\ \ \rm kHz$
Channel  ${\rm B} \text \ \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' \ = \ $

$\ \ \rm kHz$

2

Let $G$  be the weight of the second path. What is the PDF  $f_{\rm V}(\tau)$?

$f_{\rm V}(\tau) = \delta(\tau) + G \cdot \delta(\tau \, –\tau_0)$,
$f_{\rm V}(\tau) = \delta(\tau) + G^2 \cdot \delta(\tau \, –\tau_0)$,
$f_{\rm V}(\tau) = 1/(1 + G^2) \cdot \delta(\tau) + G^2/(1 + G^2) \cdot \delta(\tau \, –\tau_0)$.

3

Calculate the delay spread  $ T_{\rm V}$.

Channel  ${\rm A} \text \ \hspace{0.4cm} T_{\rm V} \ = \ $

$\ \rm µ s$
Channel  ${\rm B} \text \ \hspace{0.4cm} T_{\rm V} \ = \ $

$\ \rm µ s$

4

What is the coherence bandwidth  $B_{\rm K}$  of channel  ${\rm A}$ ?

  $B_{\rm K} = 333 \ \rm kHz$.
  $B_{\rm K} = 500 \ \rm kHz$.
  $B_{\rm K} = 1 \ \rm MHz$.
$B_{\rm K}$  cannot be calculated according to this definition.

5

What is the coherence bandwidth  $B_{\rm K}$  of channel  ${\rm B}$ ?

  $B_{\rm K} = 333 \ \rm kHz$.
  $B_{\rm K} = 500 \ \rm kHz$.
  $B_{\rm K} = 1 \ \ \rm MHz$.
$B_{\rm K}$  cannot be calculated according to this definition.


Sample solution

{

(1)  For both channels, the delay difference is $\Delta \tau = \tau_{\rm max} \, - \tau_{\rm min} = 1 \ \ \rm µ s$.

  • That's why both channels have the same value:

$$B_{\rm K}\hspace{0.01cm}' \ \ \underline {= 1000 \ \rm kHz}.$$

(2)  The graphs refer to the impulse response $h(\tau)$.

  • To obtain the delay–power density spectrum, the weights must be squared:
$${\it \Phi}_{\rm V}(\tau) = 1^2 \cdot \delta(\tau) + G^2 \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.$$
  • The integral of ${\it \Phi}_{\rm V}(\tau)$ is therefore $1 + G^2$.
  • The probability density function (PDF), however, must have „area 1” (i.e., the sum of the two Dirac weights must be $1$). From this follows:
$$f_{\rm V}(\tau) = \frac{1}{1 + G^2} \cdot \delta(\tau) + \frac{G^2}{1 + G^2} \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.$$
  • So only solution 3 is correct.
  • The first option does not describe the PDF $f_{\rm V}(\tau)$, but the impulse response $h(\tau)$.
  • The second equation specifies the delay –power spectral density ${\it \Phi}_{\rm V}(\tau)$.


(3)  For channel  $\rm A$  the two impulse weights are equal.

  • This means that the mean value $m_{\rm V}$ and the standard deviation $\sigma_{\rm V} = T_{\rm V}$ can be computed simply:
$$m_{\rm V} = \frac{\tau_0}{2} \hspace{0.15cm} {= 0.5\,{\rm µ s}}\hspace{0.05cm}, \hspace{0.2cm}T_{\rm V} = \sigma_{\rm V} =\frac{\tau_0}{2} \hspace{0.15cm}\underline {= 0.5\,{\rm µ s}} \hspace{0.05cm}.$$

For channel  $\rm B$  the Dirac weights are $1/(1+0.5^2) = 0.8$ (for $\tau = 0$) and $0.2$ (for $\tau = 1 \ \rm µ s$).

  • According to the basic laws of statistics, the noncentral first and second order moments are:
$$m_{\rm 1} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.8 \cdot 0 + 0.2 \cdot 1\,{\rm µ s} = 0.2\,{\rm µ s} \hspace{0.05cm},\hspace{0.5cm} m_{\rm 2} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.8 \cdot 0^2 + 0.2 \cdot (1\,{\rm µ s})^2 = 0.2\,({\rm µ s})^2 \hspace{0.05cm}.$$
$$\sigma_{\rm V}^2 = m_{\rm 2} - m_{\rm 1}^2 = 0.2\,({\rm µ s})^2 - (0.2\,{\rm µ s})^2 = 0.16\,({\rm µ s})^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}T_{\rm V} = \sigma_{\rm V} \hspace{0.15cm}\underline {= 0.4\,{\rm µ s}}\hspace{0.05cm}.$$


(4)  The frequency correlation function is the Fourier transform of ${\it \Phi}_{\rm V}(\tau) = \delta(\tau) + \delta(\tau \, – \tau_0)$:

$$\varphi_{\rm F}(\Delta f) = 1 + {\rm exp}(-{\rm j} \cdot 2\pi \cdot \Delta f \cdot \tau_0) = 1 + {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) -{\rm j} \cdot {\rm sin}(2\pi \cdot \Delta f \cdot \tau_0) $$
Frequency correlation function and coherence bandwidth
$$\Rightarrow \hspace{0.3cm} |\varphi_{\rm F}(\Delta f)| = \sqrt{2 + 2 \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) }\hspace{0.05cm}.$$
  • The maximum at $\delta f = 0$ is equal to $2$.
  • Therefore the equation to determine $B_{\rm K}$ is

$$|\varphi_{\rm F}(B_{\rm K})| = 1 \hspace{0.3cm} $$ $$\Rightarrow \hspace{0.3cm}|\varphi_{\rm F}(B_{\rm K})|^2 = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}2 + 2 \cdot {\rm cos}(2\pi \cdot B_{\rm K} \cdot \tau_0) = 1$$ $$\Rightarrow \hspace{0.3cm}{\rm cos}(2\pi \cdot B_{\rm K} \cdot \tau_0) = -0.5 \hspace{0.3cm} $$ $$\Rightarrow \hspace{0.3cm}2\pi \cdot B_{\rm K} \cdot \tau_0 = \frac{2\pi}{3}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}B_{\rm K} = \frac{1}{3\tau_0} = 333\,{\rm kHz}\hspace{0.05cm}.$$

  • Solution 1 is therefore correct. The graph (blue curve) illustrates the result.

(5)  For channel  ${\rm B}$  the corresponding equations are

$${\it \Phi}_{\rm V}(\tau) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1^2 \cdot \delta(\tau) + (-0.5)^2 \cdot \delta(\tau - \tau_0) \hspace{0.05cm},\hspace{0.05cm} \varphi_{\rm F}(\Delta f) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 + 0.25 \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) -{\rm j} \cdot 0.25 \cdot {\rm sin}(2\pi \cdot \Delta f \cdot \tau_0)\hspace{0.05cm},$$
$$|\varphi_{\rm F}(\Delta f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm}= \sqrt{\frac{17}{16} + \frac{1}{2} \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) }\hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm Max}\hspace{0.1cm}|\varphi_{\rm F}(\Delta f)| = 1.25\hspace{0.05cm},\hspace{0.2cm}{\rm Min}\hspace{0.1cm}|\varphi_{\rm F}(\Delta f)| = 0.75\hspace{0.05cm}.$$
  • You can see from this result that the $50\%$–coherence bandwidth cannot be specified here.
  • Therefore, solution 4 is correct.


This result is the reason why there are different definitions for the coherence range in the literature, for example

  • the $90\%$–coherence bandwidth (in the example $B_{\rm K, \hspace{0.03cm} 90\%} =184 \ \ \rm kHz$),
  • the very simple approximation $B_{\rm K}\hspace{0.01cm}'$ given above (in the example $B_{\rm K}\hspace{0.01cm}' =1 \ \ \rm MHz$)


You can see from these numerical values that all the information on this is very vague and that the individual „coherence bandwidths” can be very different.