Difference between revisions of "Aufgaben:Exercise 2.7Z: Coherence Bandwidth of the LTI Two-Path Channel"

From LNTwww
Line 88: Line 88:
  
  
'''(3)'''  For channel  $\rm A$  the two impulse weights are equal.  
+
'''(3)'''  For channel  $\rm A$  the two impulse weights are equal.  This means that the mean value  $m_{\rm V}$  and the standard deviation  $\sigma_{\rm V} = T_{\rm V}$  can be computed simply:
*This means that the mean value  $m_{\rm V}$  and the standard deviation  $\sigma_{\rm V} = T_{\rm V}$  can be computed simply:
 
 
:$$m_{\rm V} = \frac{\tau_0}{2} \hspace{0.15cm} {= 0.5\,{\rm µ s}}\hspace{0.05cm},
 
:$$m_{\rm V} = \frac{\tau_0}{2} \hspace{0.15cm} {= 0.5\,{\rm µ s}}\hspace{0.05cm},
 
  \hspace{0.2cm}T_{\rm V} = \sigma_{\rm V} =\frac{\tau_0}{2} \hspace{0.15cm}\underline {= 0.5\,{\rm µ s}}
 
  \hspace{0.2cm}T_{\rm V} = \sigma_{\rm V} =\frac{\tau_0}{2} \hspace{0.15cm}\underline {= 0.5\,{\rm µ s}}
Line 95: Line 94:
  
 
For channel  $\rm B$  the Dirac weights are  $1/(1+0.5^2) = 0.8$  $($for  $\tau = 0)$  and  $0.2$  $($for  $\tau = 1 \ \rm µ s)$.
 
For channel  $\rm B$  the Dirac weights are  $1/(1+0.5^2) = 0.8$  $($for  $\tau = 0)$  and  $0.2$  $($for  $\tau = 1 \ \rm µ s)$.
* According to the  [[Theory_of_Stochastic_Signals/Erwartungswerte_und_Momente#Momentenberechnung_als_Scharmittelwert|basic laws]] of statistics, the noncentral first and second order moments are:
+
* According to the  [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|basic laws]]  of statistics, the non-central first and second order moments are:
 
:$$m_{\rm 1} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.8 \cdot 0 + 0.2 \cdot 1\,{\rm µ s} = 0.2\,{\rm µ s} \hspace{0.05cm},\hspace{0.5cm}
 
:$$m_{\rm 1} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.8 \cdot 0 + 0.2 \cdot 1\,{\rm µ s} = 0.2\,{\rm µ s} \hspace{0.05cm},\hspace{0.5cm}
 
m_{\rm 2} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.8 \cdot 0^2 + 0.2 \cdot (1\,{\rm µ s})^2 = 0.2\,({\rm µ s})^2 \hspace{0.05cm}.$$
 
m_{\rm 2} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.8 \cdot 0^2 + 0.2 \cdot (1\,{\rm µ s})^2 = 0.2\,({\rm µ s})^2 \hspace{0.05cm}.$$
  
*To get the result you are looking for you can use the  [[Theory_of_Stochastic_Signals/Erwartungswerte_und_Momente#Einige_h.C3.A4ufig_benutzte_Zentralmomente| Steiner's Theorem]].
+
*To get the result you are looking for you can use the  [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments#Some_common_central_moments| Steiner's Theorem]]:
 
:$$\sigma_{\rm V}^2 = m_{\rm 2} - m_{\rm 1}^2 = 0.2\,({\rm µ s})^2 - (0.2\,{\rm µ s})^2 = 0.16\,({\rm µ s})^2
 
:$$\sigma_{\rm V}^2 = m_{\rm 2} - m_{\rm 1}^2 = 0.2\,({\rm µ s})^2 - (0.2\,{\rm µ s})^2 = 0.16\,({\rm µ s})^2
 
   \hspace{0.3cm}\Rightarrow \hspace{0.3cm}T_{\rm V} = \sigma_{\rm V}  \hspace{0.15cm}\underline {= 0.4\,{\rm µ s}}\hspace{0.05cm}.$$
 
   \hspace{0.3cm}\Rightarrow \hspace{0.3cm}T_{\rm V} = \sigma_{\rm V}  \hspace{0.15cm}\underline {= 0.4\,{\rm µ s}}\hspace{0.05cm}.$$
  
  
'''(4)'''  The frequency correlation function is the Fourier transform of ${\it \Phi}_{\rm V}(\tau) = \delta(\tau) + \delta(\tau \, – \tau_0)$:
+
'''(4)'''  The frequency correlation function is the Fourier transform of  ${\it \Phi}_{\rm V}(\tau) = \delta(\tau) + \delta(\tau \, – \tau_0)$:
 
:$$\varphi_{\rm F}(\Delta f) = 1 + {\rm exp}(-{\rm j} \cdot 2\pi \cdot \Delta f \cdot \tau_0) = 1 + {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) -{\rm j} \cdot  {\rm sin}(2\pi \cdot \Delta f \cdot \tau_0) $$
 
:$$\varphi_{\rm F}(\Delta f) = 1 + {\rm exp}(-{\rm j} \cdot 2\pi \cdot \Delta f \cdot \tau_0) = 1 + {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) -{\rm j} \cdot  {\rm sin}(2\pi \cdot \Delta f \cdot \tau_0) $$
 
[[File:P_ID2186__Mob_Z_2_7d.png|right|frame|Frequency correlation function and coherence bandwidth]]
 
[[File:P_ID2186__Mob_Z_2_7d.png|right|frame|Frequency correlation function and coherence bandwidth]]
 
:$$\Rightarrow \hspace{0.3cm} |\varphi_{\rm F}(\Delta f)| = \sqrt{2 +  2 \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) }\hspace{0.05cm}.$$
 
:$$\Rightarrow \hspace{0.3cm} |\varphi_{\rm F}(\Delta f)| = \sqrt{2 +  2 \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) }\hspace{0.05cm}.$$
  
*The maximum at $\delta f = 0$ is equal to $2$.  
+
*The maximum at  $\Delta f = 0$  is equal to  $2$.  
 
*Therefore the equation to determine $B_{\rm K}$ is
 
*Therefore the equation to determine $B_{\rm K}$ is
$$|\varphi_{\rm F}(B_{\rm K})| = 1 \hspace{0.3cm} $$
+
:$$|\varphi_{\rm F}(B_{\rm K})| = 1 \hspace{0.3cm}  
$$\Rightarrow \hspace{0.3cm}|\varphi_{\rm F}(B_{\rm K})|^2 = 1
+
\Rightarrow \hspace{0.3cm}|\varphi_{\rm F}(B_{\rm K})|^2 = 1 $$
\hspace{0.3cm} \Rightarrow \hspace{0.3cm}2 + 2 \cdot {\rm cos}(2\pi \cdot B_{\rm K} \cdot \tau_0) = 1$$
+
:$$ \Rightarrow \hspace{0.3cm}2 + 2 \cdot {\rm cos}(2\pi \cdot B_{\rm K} \cdot \tau_0) = 1 \hspace{0.3cm}
$$\Rightarrow \hspace{0.3cm}{\rm cos}(2\pi \cdot B_{\rm K} \cdot \tau_0) = -0.5 \hspace{0.3cm} $$
+
\Rightarrow \hspace{0.3cm}{\rm cos}(2\pi \cdot B_{\rm K} \cdot \tau_0) = -0.5 \hspace{0.3cm} $$
$$\Rightarrow \hspace{0.3cm}2\pi \cdot B_{\rm K} \cdot \tau_0 = \frac{2\pi}{3}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}B_{\rm K} = \frac{1}{3\tau_0} = 333\,{\rm kHz}\hspace{0.05cm}.$$
+
:$$\Rightarrow \hspace{0.3cm}2\pi \cdot B_{\rm K} \cdot \tau_0 = \frac{2\pi}{3}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}B_{\rm K} = \frac{1}{3\tau_0} = 333\,{\rm kHz}\hspace{0.05cm}.$$
 +
 
 +
<u>Solution 1</u> is correct.&nbsp; The graph (blue curve) illustrates the result.
  
*<u>Solution 1</u> is therefore correct. The graph (blue curve) illustrates the result.
 
  
 
'''(5)'''&nbsp; For channel &nbsp;${\rm B}$&nbsp; the corresponding equations are
 
'''(5)'''&nbsp; For channel &nbsp;${\rm B}$&nbsp; the corresponding equations are
:$${\it \Phi}_{\rm V}(\tau) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1^2 \cdot \delta(\tau) + (-0.5)^2 \cdot \delta(\tau - \tau_0) \hspace{0.05cm},\hspace{0.05cm}
+
:$${\it \Phi}_{\rm V}(\tau) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1^2 \cdot \delta(\tau) + (-0.5)^2 \cdot \delta(\tau - \tau_0) \hspace{0.05cm},\hspace{0.05cm}$$
\varphi_{\rm F}(\Delta f) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  1 + 0.25 \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) -{\rm j} \cdot 0.25 \cdot  {\rm sin}(2\pi \cdot \Delta f \cdot \tau_0)\hspace{0.05cm},$$
+
:$$\varphi_{\rm F}(\Delta f) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  1 + 0.25 \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) -{\rm j} \cdot 0.25 \cdot  {\rm sin}(2\pi \cdot \Delta f \cdot \tau_0)\hspace{0.05cm},$$
:$$|\varphi_{\rm F}(\Delta f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm}= \sqrt{\frac{17}{16} +  \frac{1}{2} \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) }\hspace{0.3cm}
+
:$$|\varphi_{\rm F}(\Delta f)| \hspace{-0.1cm} \ = \ \sqrt{\frac{17}{16} +  \frac{1}{2} \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) }\hspace{0.3cm}$$
\Rightarrow \hspace{0.3cm}{\rm Max}\hspace{0.1cm}|\varphi_{\rm F}(\Delta f)| = 1.25\hspace{0.05cm},\hspace{0.2cm}{\rm Min}\hspace{0.1cm}|\varphi_{\rm F}(\Delta f)| = 0.75\hspace{0.05cm}.$$
+
:$$\Rightarrow \hspace{0.3cm}{\rm Max}\hspace{0.1cm}|\varphi_{\rm F}(\Delta f)| = 1.25\hspace{0.05cm},\hspace{0.2cm}{\rm Min}\hspace{0.1cm}|\varphi_{\rm F}(\Delta f)| = 0.75\hspace{0.05cm}.$$
  
*You can see from this result that the $50\%$&ndash;coherence bandwidth cannot be specified here.
+
You can see from this result that the&nbsp; $50\%$&ndash;coherence bandwidth cannot be specified here &nbsp; &rArr; &nbsp;  <u>solution 4</u> is correct.
*Therefore, <u>solution 4</u> is correct.
 
  
  
 
This result is the reason why there are different definitions for the coherence range in the literature, for example
 
This result is the reason why there are different definitions for the coherence range in the literature, for example
* the $90\%$&ndash;coherence bandwidth (in the example $B_{\rm K, \hspace{0.03cm} 90\%} =184 \ \ \rm kHz$),
+
* the&nbsp; $90\%$&ndash;coherence bandwidth&nbsp; $($in the example&nbsp; $B_{\rm K, \hspace{0.03cm} 90\%} =184 \ \ \rm kHz$$)$,
* the very simple approximation $B_{\rm K}\hspace{0.01cm}'$ given above (in the example $B_{\rm K}\hspace{0.01cm}' =1 \ \ \rm MHz$)
+
* the very simple approximation&nbsp; $B_{\rm K}\hspace{0.01cm}'$&nbsp; given above&nbsp; $($in the example&nbsp; $B_{\rm K}\hspace{0.01cm}' =1 \ \ \rm MHz)$.
  
  
You can see from these numerical values that all the information on this is very vague and that the individual &bdquo;coherence bandwidths&rdquo; can be very different.
+
You can see from these numerical values that all the information on this topic is very vague and that the individual &bdquo;coherence bandwidths&rdquo; can be very different.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 19:46, 14 January 2021

Two two-path channels

For the GWSSUS model, two parameters are given, which both statistically capture the resulting delay  $\tau$.  More information on the topic „Multipath Propagation” can be found in the section  Parameters of the GWSSUS model  of the theory part.

  • The  delay spread  $T_{\rm V}$  is by definition equal to the standard deviation of the random variable  $\tau$.
    This can be determined from the probability density function  $f_{\rm V}(\tau)$.  The PDF  $f_{\rm V}(\tau)$  has the same shape as the delay power density spectrum  ${\it \Phi}_{\rm V}(\tau)$.
  • The  coherence bandwidth  $B_{\rm K}$  describes the same situation in the frequency domain.
    It is defined as the value of $\Delta f$ at which the magnitude of the frequency correlation function  $\varphi_{\rm F}(\Delta f)$  first drops to half its maximum value:
$$|\varphi_{\rm F}(\Delta f = B_{\rm K})| \stackrel {!}{=} {1}/{2} \cdot |\varphi_{\rm F}(\Delta f = 0)| \hspace{0.05cm}.$$

The relationship between  ${\it \Phi}_{\rm V}(\tau)$  and  $\varphi_{\rm F}(\Delta f)$  is given by the Fourier transform:

$$\varphi_{\rm F}(\Delta f) \hspace{0.2cm} {\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} {\it \Phi}_{\rm V}(\tau)\hspace{0.05cm}.$$
  • Both definitions are only partially suitable for a time-invariant channel.
  • For a time-invariant two-path channel (i.e. one with constant path weights according to the above graph), the following approximation for the coherence bandwidth is often used:
$$B_{\rm K}\hspace{0.01cm}' = \frac{1}{\tau_{\rm max} - \tau_{\rm min}} \hspace{0.05cm}.$$


In this task we want to clarify

  • why there are different definitions for the coherence bandwidth in the literature,
  • which connection exists between  $B_{\rm K}$  and  $B_{\rm K}\hspace{0.01cm}'$,  and
  • which definitions make sense for which boundary conditions.




Notes:



Questionnaire

1

What is the approximate coherence bandwidth  $B_{\rm K}\hspace{0.01cm}'$  for channels  $\rm A$  and  $\rm B$?

Channel  ${\rm A} \text{:} \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' \ = \ $

$\ \ \rm kHz$
Channel  ${\rm B} \text{:} \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' \ = \ $

$\ \ \rm kHz$

2

Let  $G$  be the weight of the second path.  What is the PDF  $f_{\rm V}(\tau)$?

$f_{\rm V}(\tau) = \delta(\tau) + G \cdot \delta(\tau \, –\tau_0)$,
$f_{\rm V}(\tau) = \delta(\tau) + G^2 \cdot \delta(\tau \, –\tau_0)$,
$f_{\rm V}(\tau) = 1/(1 + G^2) \cdot \delta(\tau) + G^2/(1 + G^2) \cdot \delta(\tau \, –\tau_0)$.

3

Calculate the delay spread  $ T_{\rm V}$.

Channel  ${\rm A} \text{:} \hspace{0.4cm} T_{\rm V} \ = \ $

$\ \rm µ s$
Channel  ${\rm B} \text{:} \hspace{0.4cm} T_{\rm V} \ = \ $

$\ \rm µ s$

4

What is the coherence bandwidth  $B_{\rm K}$  of channel  ${\rm A}$ ?

  $B_{\rm K} = 333 \ \rm kHz$.
  $B_{\rm K} = 500 \ \rm kHz$.
  $B_{\rm K} = 1 \ \rm MHz$.
$B_{\rm K}$  cannot be calculated according to this definition.

5

What is the coherence bandwidth  $B_{\rm K}$  of channel  ${\rm B}$ ?

  $B_{\rm K} = 333 \ \rm kHz$.
  $B_{\rm K} = 500 \ \rm kHz$.
  $B_{\rm K} = 1 \ \ \rm MHz$.
$B_{\rm K}$  cannot be calculated according to this definition.


Solution

(1)  For both channels, the delay difference is  $\Delta \tau = \tau_{\rm max} \, - \tau_{\rm min} = 1 \ \ \rm µ s$.

  • That's why both channels have the same value:
$$B_{\rm K}\hspace{0.01cm}' \ \ \underline {= 1000 \ \rm kHz}.$$


(2)  The graphs refer to the impulse response  $h(\tau)$.

  • To obtain the delay–power density spectrum, the weights must be squared:
$${\it \Phi}_{\rm V}(\tau) = 1^2 \cdot \delta(\tau) + G^2 \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.$$
  • The integral of  ${\it \Phi}_{\rm V}(\tau)$  is therefore  $1 + G^2$.
  • The probability density function  $\rm (PDF)$, however, must have „area $1$” $($i.e., the sum of the two Dirac weights must be $1)$.  From this follows:
$$f_{\rm V}(\tau) = \frac{1}{1 + G^2} \cdot \delta(\tau) + \frac{G^2}{1 + G^2} \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.$$
  • Only solution 3 is correct.
  • The first option does not describe the PDF  $f_{\rm V}(\tau)$, but the impulse response  $h(\tau)$.
  • The second equation specifies the delay power density spectrum  ${\it \Phi}_{\rm V}(\tau)$.


(3)  For channel  $\rm A$  the two impulse weights are equal.  This means that the mean value  $m_{\rm V}$  and the standard deviation  $\sigma_{\rm V} = T_{\rm V}$  can be computed simply:

$$m_{\rm V} = \frac{\tau_0}{2} \hspace{0.15cm} {= 0.5\,{\rm µ s}}\hspace{0.05cm}, \hspace{0.2cm}T_{\rm V} = \sigma_{\rm V} =\frac{\tau_0}{2} \hspace{0.15cm}\underline {= 0.5\,{\rm µ s}} \hspace{0.05cm}.$$

For channel  $\rm B$  the Dirac weights are  $1/(1+0.5^2) = 0.8$  $($for  $\tau = 0)$  and  $0.2$  $($for  $\tau = 1 \ \rm µ s)$.

  • According to the  basic laws  of statistics, the non-central first and second order moments are:
$$m_{\rm 1} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.8 \cdot 0 + 0.2 \cdot 1\,{\rm µ s} = 0.2\,{\rm µ s} \hspace{0.05cm},\hspace{0.5cm} m_{\rm 2} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.8 \cdot 0^2 + 0.2 \cdot (1\,{\rm µ s})^2 = 0.2\,({\rm µ s})^2 \hspace{0.05cm}.$$
$$\sigma_{\rm V}^2 = m_{\rm 2} - m_{\rm 1}^2 = 0.2\,({\rm µ s})^2 - (0.2\,{\rm µ s})^2 = 0.16\,({\rm µ s})^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}T_{\rm V} = \sigma_{\rm V} \hspace{0.15cm}\underline {= 0.4\,{\rm µ s}}\hspace{0.05cm}.$$


(4)  The frequency correlation function is the Fourier transform of  ${\it \Phi}_{\rm V}(\tau) = \delta(\tau) + \delta(\tau \, – \tau_0)$:

$$\varphi_{\rm F}(\Delta f) = 1 + {\rm exp}(-{\rm j} \cdot 2\pi \cdot \Delta f \cdot \tau_0) = 1 + {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) -{\rm j} \cdot {\rm sin}(2\pi \cdot \Delta f \cdot \tau_0) $$
Frequency correlation function and coherence bandwidth
$$\Rightarrow \hspace{0.3cm} |\varphi_{\rm F}(\Delta f)| = \sqrt{2 + 2 \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) }\hspace{0.05cm}.$$
  • The maximum at  $\Delta f = 0$  is equal to  $2$.
  • Therefore the equation to determine $B_{\rm K}$ is
$$|\varphi_{\rm F}(B_{\rm K})| = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}|\varphi_{\rm F}(B_{\rm K})|^2 = 1 $$
$$ \Rightarrow \hspace{0.3cm}2 + 2 \cdot {\rm cos}(2\pi \cdot B_{\rm K} \cdot \tau_0) = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm cos}(2\pi \cdot B_{\rm K} \cdot \tau_0) = -0.5 \hspace{0.3cm} $$
$$\Rightarrow \hspace{0.3cm}2\pi \cdot B_{\rm K} \cdot \tau_0 = \frac{2\pi}{3}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}B_{\rm K} = \frac{1}{3\tau_0} = 333\,{\rm kHz}\hspace{0.05cm}.$$

Solution 1 is correct.  The graph (blue curve) illustrates the result.


(5)  For channel  ${\rm B}$  the corresponding equations are

$${\it \Phi}_{\rm V}(\tau) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1^2 \cdot \delta(\tau) + (-0.5)^2 \cdot \delta(\tau - \tau_0) \hspace{0.05cm},\hspace{0.05cm}$$
$$\varphi_{\rm F}(\Delta f) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 + 0.25 \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) -{\rm j} \cdot 0.25 \cdot {\rm sin}(2\pi \cdot \Delta f \cdot \tau_0)\hspace{0.05cm},$$
$$|\varphi_{\rm F}(\Delta f)| \hspace{-0.1cm} \ = \ \sqrt{\frac{17}{16} + \frac{1}{2} \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) }\hspace{0.3cm}$$
$$\Rightarrow \hspace{0.3cm}{\rm Max}\hspace{0.1cm}|\varphi_{\rm F}(\Delta f)| = 1.25\hspace{0.05cm},\hspace{0.2cm}{\rm Min}\hspace{0.1cm}|\varphi_{\rm F}(\Delta f)| = 0.75\hspace{0.05cm}.$$

You can see from this result that the  $50\%$–coherence bandwidth cannot be specified here   ⇒   solution 4 is correct.


This result is the reason why there are different definitions for the coherence range in the literature, for example

  • the  $90\%$–coherence bandwidth  $($in the example  $B_{\rm K, \hspace{0.03cm} 90\%} =184 \ \ \rm kHz$$)$,
  • the very simple approximation  $B_{\rm K}\hspace{0.01cm}'$  given above  $($in the example  $B_{\rm K}\hspace{0.01cm}' =1 \ \ \rm MHz)$.


You can see from these numerical values that all the information on this topic is very vague and that the individual „coherence bandwidths” can be very different.