Difference between revisions of "Aufgaben:Exercise 2.7Z: Coherence Bandwidth of the LTI Two-Path Channel"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Mobile Kommunikation/Das GWSSUS–Kanalmodell}} right|frame|Zwei Zweiwegekanäle Zum GWSSUS&nd…“)
 
m (Text replacement - "power spectral density" to "power-spectral density")
 
(24 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
   
 
   
{{quiz-Header|Buchseite=Mobile Kommunikation/Das GWSSUS–Kanalmodell}}
+
{{quiz-Header|Buchseite=Mobile_Communications/The_GWSSUS_Channel_Model}}
  
[[File:P_ID2178__Mob_Z_2_7.png|right|frame|Zwei Zweiwegekanäle]]
+
[[File:EN_Mob_A_2_7Z.png|right|frame|Two two-path channels]]
Zum GWSSUS–Modell werden zwei Kenngrößen angegeben, die beide die entstehende Verzögerung  $\tau$  statistisch erfassen. Mehr Informationen zum Thema „Mehrwegeausbreitung” finden Sie im Abschnitt  [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell#Simulation_gem.C3.A4.C3.9F_dem_GWSSUS.E2.80.93Modell| Simulation gemäß dem GWSSUS–Modell]]  des Theorieteils.
+
For the GWSSUS model, two parameters are given, which both statistically capture the resulting delay  $\tau$.  More information on the topic "Multipath Propagation" can be found in the section  [[Mobile_Communications/The_GWSSUS_Channel_Model#Parameters_of_the_GWSSUS_model| Parameters of the GWSSUS model]]  of the theory part.
* Die &nbsp;<b>Mehrwegeverbreiterung</b>&nbsp; $T_{\rm V}$&nbsp; ist definitionsgemäß gleich der Standardabweichung der Zufallsgröße &nbsp;$\tau$. <br>Diese kann aus der Wahrscheinlichkeitsdichte&nbsp; $f_{\rm V}(\tau)$&nbsp; ermittelt werden. Die WDF&nbsp; $f_{\rm V}(\tau)$&nbsp; ist dabei formgleich mit dem Verzögerungs&ndash;Leistungsdichtespektrum&nbsp; ${\it \Phi}_{\rm V}(\tau)$.  
+
* The &nbsp;<b>delay spread</b>&nbsp; $T_{\rm V}$&nbsp; is by definition equal to the standard deviation of the random variable &nbsp;$\tau$. <br>This can be determined from the probability density function&nbsp; $f_{\rm V}(\tau)$.&nbsp; The PDF&nbsp; $f_{\rm V}(\tau)$&nbsp; has the same shape as the delay power-spectral density&nbsp; ${\it \Phi}_{\rm V}(\tau)$.  
* Die &nbsp;<b>Kohärenzbandbreite</b>&nbsp; $B_{\rm K}$&nbsp; beschreibt den gleichen Sachverhalt im Frequenzbereich. <br>Diese ist implizit durch die Frequenz&ndash;Korrelationsfunktion&nbsp; $\varphi_{\rm F}(\Delta f)$&nbsp; festgelegt als derjenige&nbsp; $\Delta f$&ndash;Wert, bei dem deren Betrag erstmals auf die Hälfte abgefallen ist:
+
* The &nbsp;<b>coherence bandwidth</b>&nbsp; $B_{\rm K}$&nbsp; describes the same situation in the frequency domain. <br> It is defined as the value of $\Delta f$ at which the magnitude of the frequency correlation function&nbsp; $\varphi_{\rm F}(\Delta f)$&nbsp; first drops to half its maximum value:
 
:$$|\varphi_{\rm F}(\Delta f = B_{\rm K})| \stackrel {!}{=} {1}/{2} \cdot |\varphi_{\rm F}(\Delta f = 0)| \hspace{0.05cm}.$$
 
:$$|\varphi_{\rm F}(\Delta f = B_{\rm K})| \stackrel {!}{=} {1}/{2} \cdot |\varphi_{\rm F}(\Delta f = 0)| \hspace{0.05cm}.$$
  
Der Zusammenhang zwischen&nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp; und&nbsp; $\varphi_{\rm F}(\Delta f)$&nbsp; ist durch die Fouriertransformation gegeben:
+
The relationship between&nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp; and&nbsp; $\varphi_{\rm F}(\Delta f)$&nbsp; is given by the Fourier transform:
 
:$$\varphi_{\rm F}(\Delta f)
 
:$$\varphi_{\rm F}(\Delta f)
 
  \hspace{0.2cm}  {\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} {\it \Phi}_{\rm V}(\tau)\hspace{0.05cm}.$$
 
  \hspace{0.2cm}  {\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} {\it \Phi}_{\rm V}(\tau)\hspace{0.05cm}.$$
  
*Beide Definitionen sind bei einem zeitinvarianten Kanal nur bedingt geeignet.  
+
*Both definitions are only partially suitable for a time-invariant channel.  
*Oft verwendet man für einen zeitinvarianten Zweiwegekanal (also mit konstanten Pfadgewichten entsprechend obiger Grafik) als Näherung für die Kohärenzbandbreite:
+
*For a time-invariant two-path channel (i.e. one with constant path weights according to the above graph), the following approximation for the coherence bandwidth is often used:
 
:$$B_{\rm K}\hspace{0.01cm}' = \frac{1}{\tau_{\rm max} - \tau_{\rm min}} \hspace{0.05cm}.$$
 
:$$B_{\rm K}\hspace{0.01cm}' = \frac{1}{\tau_{\rm max} - \tau_{\rm min}} \hspace{0.05cm}.$$
  
  
In dieser Aufgabe soll geklärt werden,
+
In this task we want to clarify
* warum es in der Literatur verschiedene Definitionen für die Kohärenzbandbreite gibt,
+
* why there are different definitions for the coherence bandwidth in the literature,
* welcher Zusammenhang zwischen&nbsp; $B_{\rm K}$&nbsp; und&nbsp; $B_{\rm K}\hspace{0.01cm}'$&nbsp; besteht, und
+
* which connection exists between&nbsp; $B_{\rm K}$&nbsp; and&nbsp; $B_{\rm K}\hspace{0.01cm}'$,&nbsp; and
* welche Definitionen bei welchen Randbedingungen sinnvoll sind.
+
* which definitions make sense for which boundary conditions.
  
  
Line 27: Line 27:
  
  
''Hinweise:''
+
''Notes:''
*Die Aufgabe gehört zum Kapitel&nbsp; [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell| Das GWSSUS&ndash;Kanalmodell]].
+
*This exercise belongs to the chapter&nbsp; [[Mobile_Communications/The_GWSSUS_Channel_Model|The GWSSUS Channel Model]].
*Bezug genommen  wird auch auf einige Theorieseiten im Kapitel&nbsp; [[Mobile_Kommunikation/Mehrwegeempfang_beim_Mobilfunk| Mehrwegeempfang beim Mobilfunk]].
+
*This task also refers to some theory pages in chapter&nbsp; [[Mobile_Communications/Multi-Path_Reception_in_Mobile_Communications| Multi-Path Reception in Mobile Communications]].
 
   
 
   
  
  
  
===Fragebogen===
+
===Questionnaire===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Kohärenzbandbreitennäherungen&nbsp; $B_{\rm K}\hspace{0.01cm}'$&nbsp; ergeben sich für Kanal &nbsp;$\rm A$&nbsp; und &nbsp;$\rm B$?
+
{What is the approximate coherence bandwidth&nbsp; $B_{\rm K}\hspace{0.01cm}'$&nbsp; for channels &nbsp;$\rm A$&nbsp; and &nbsp;$\rm B$?
 
|type="{}"}
 
|type="{}"}
Kanal &nbsp;${\rm A} \text {:} \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' \ = \ ${ 1000 3% } $\ \rm kHz$
+
Channel &nbsp;${\rm A} \text{:} \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' \ = \ ${ 1000 3% } $\ \ \rm kHz$
Kanal &nbsp;${\rm B} \text {:} \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' \ = \ ${ 1000 3% } $\ \rm kHz$
+
Channel &nbsp;${\rm B} \text{:} \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' \ = \ ${ 1000 3% } $\ \ \rm kHz$
  
{Wie lautet die WDF&nbsp; $f_{\rm V}(\tau)$? $G$&nbsp; gibt das Gewicht des zweiten Pfades an.
+
{Let&nbsp; $G$&nbsp; be the weight of the second path.&nbsp; What is the PDF&nbsp; $f_{\rm V}(\tau)$?
 
|type="()"}
 
|type="()"}
 
- $f_{\rm V}(\tau) = \delta(\tau) + G \cdot \delta(\tau \, &ndash;\tau_0)$,
 
- $f_{\rm V}(\tau) = \delta(\tau) + G \cdot \delta(\tau \, &ndash;\tau_0)$,
Line 47: Line 47:
 
+ $f_{\rm V}(\tau) = 1/(1 + G^2) \cdot \delta(\tau) + G^2/(1 + G^2) \cdot \delta(\tau \, &ndash;\tau_0)$.
 
+ $f_{\rm V}(\tau) = 1/(1 + G^2) \cdot \delta(\tau) + G^2/(1 + G^2) \cdot \delta(\tau \, &ndash;\tau_0)$.
  
{Berechnen Sie die Mehrwegeverbreitung&nbsp; $ T_{\rm V}$.
+
{Calculate the delay spread&nbsp; $ T_{\rm V}$.
 
|type="{}"}
 
|type="{}"}
Kanal &nbsp;${\rm A} \text{:} \hspace{0.4cm} T_{\rm V} \ = \ ${ 0.5 3% } $\ \rm &micro; s$
+
Channel &nbsp;${\rm A} \text{:} \hspace{0.4cm} T_{\rm V} \ = \ ${ 0.5 3% } $\ \rm &micro; s$
Kanal &nbsp;${\rm B} \text{:} \hspace{0.4cm} T_{\rm V} \ = \ ${ 0.4 3% } $\ \rm &micro; s$
+
Channel &nbsp;${\rm B} \text{:} \hspace{0.4cm} T_{\rm V} \ = \ ${ 0.4 3% } $\ \rm &micro; s$
  
{Welche Kohärenzbandbreite&nbsp; $B_{\rm K}$&nbsp; weist der Kanal &nbsp;${\rm A}$&nbsp; auf?
+
{What is the coherence bandwidth&nbsp; $B_{\rm K}$&nbsp; of channel &nbsp;${\rm A}$&nbsp;?
|type="[]"}
+
|type="()"}
+ Es gilt&nbsp; $B_{\rm K} = 333 \ \rm kHz$.
+
+ &nbsp; $B_{\rm K} = 333 \ \rm kHz$.
- Es gilt&nbsp; $B_{\rm K} = 500 \ \rm kHz$.
+
- &nbsp; $B_{\rm K} = 500 \ \rm kHz$.
- Es gilt&nbsp; $B_{\rm K} = 1 \ \rm MHz$.
+
- &nbsp; $B_{\rm K} = 1 \ \rm MHz$.
- $B_{\rm K}$&nbsp; ist nach dieser Definition nicht angebbar.
+
- $B_{\rm K}$&nbsp; cannot be calculated according to this definition.
  
{Welche Kohärenzbandbreite&nbsp; $B_{\rm K}$&nbsp; weist der Kanal &nbsp;${\rm B}$&nbsp; auf?
+
{What is the coherence bandwidth&nbsp; $B_{\rm K}$&nbsp; of channel &nbsp;${\rm B}$&nbsp;?
|type="[]"}
+
|type="()"}
- Es gilt&nbsp; $B_{\rm K} = 333 \ \rm kHz$.
+
- &nbsp; $B_{\rm K} = 333 \ \rm kHz$.
- Es gilt&nbsp; $B_{\rm K} = 500 \ \rm kHz$.
+
- &nbsp; $B_{\rm K} = 500 \ \rm kHz$.
- Es gilt&nbsp; $B_{\rm K} = 1 \ \rm MHz$.
+
- &nbsp; $B_{\rm K} = 1 \ \ \rm MHz$.
+ $B_{\rm K}$&nbsp; ist nach dieser Definition nicht angebbar.
+
+ $B_{\rm K}$&nbsp; cannot be calculated according to this definition.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Bei beiden Kanälen beträgt Laufzeitdifferenz $\Delta \tau = \tau_{\rm max} \, - \tau_{\rm min} = 1 \ \rm &micro; s$.
+
'''(1)'''&nbsp; For both channels, the delay difference is&nbsp; $\Delta \tau = \tau_{\rm max} \, - \tau_{\rm min} = 1 \ \ \rm &micro; s$.
* Deshalb ergibt sich bei beiden Kanälen der gleiche Wert:
+
* That's why both channels have the same value:
:$$B_{\rm K}\hspace{0.01cm}' \ \underline {= 1000 \ \rm kHz}.$$
+
:$$B_{\rm K}\hspace{0.01cm}' \ \ \underline {= 1000 \ \rm kHz}.$$
  
  
'''(2)'''&nbsp; Die Grafiken beziehen sich auf die Impulsantwort $h(\tau)$.  
+
'''(2)'''&nbsp; The graphs refer to the impulse response&nbsp; $h(\tau)$.  
*Um das Verzögerungs&ndash;LDS zu erhalten, müssen die Gewichte quadriert werden:
+
*To obtain the delay&ndash;power-spectral density, the weights must be squared:
 
:$${\it \Phi}_{\rm V}(\tau) = 1^2 \cdot \delta(\tau) + G^2 \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.$$
 
:$${\it \Phi}_{\rm V}(\tau) = 1^2 \cdot \delta(\tau) + G^2 \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.$$
  
*Das Integral über ${\it \Phi}_{\rm V}(\tau)$ ist demnach $1 + G^2$.  
+
*The integral of&nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp; is therefore&nbsp; $1 + G^2$.  
*Die Wahrscheinlichkeitsdichtefunktion (WDF) muss aber die &bdquo;Fläche 1&rdquo; ergeben (Summe der beiden Diracgewichte gleich $1$). Daraus folgt:
+
*The probability density function&nbsp; $\rm (PDF)$, however, must have "area $1$" $($i.e., the sum of the two Dirac weights must be $1)$.&nbsp; From this follows:
 
:$$f_{\rm V}(\tau) = \frac{1}{1 + G^2} \cdot \delta(\tau) + \frac{G^2}{1 + G^2} \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.$$
 
:$$f_{\rm V}(\tau) = \frac{1}{1 + G^2} \cdot \delta(\tau) + \frac{G^2}{1 + G^2} \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.$$
  
*Richtig ist somit nur der <u>Lösungsvorschlag 3</u>.  
+
*Only <u>solution 3</u> is correct.  
*Der erste Vorschlag beschreibt nicht die WDF $f_{\rm V}(\tau)$, sondern die Impulsantwort $h(\tau)$.  
+
*The first option does not describe the PDF&nbsp; $f_{\rm V}(\tau)$, but the impulse response&nbsp; $h(\tau)$.  
*Die zweite Gleichung gibt das Verzögerungs&ndash;LDS ${\it \Phi}_{\rm V}(\tau)$ an.
+
*The second equation specifies the delay power-spectral density&nbsp; ${\it \Phi}_{\rm V}(\tau)$.
  
  
  
'''(3)'''&nbsp; Beim Kanal &nbsp;$\rm A$&nbsp; sind die beiden Impulsgewichte gleich.  
+
'''(3)'''&nbsp; For channel &nbsp;$\rm A$&nbsp; the two impulse weights are equal.&nbsp; This means that the mean value&nbsp; $m_{\rm V}$&nbsp; and the standard deviation&nbsp; $\sigma_{\rm V} = T_{\rm V}$&nbsp; can be computed simply:
*Damit kann für den Mittelwert $m_{\rm V}$ und die Standardabweichung $\sigma_{\rm V} = T_{\rm V}$ ohne große Rechnung geschrieben werden:
 
 
:$$m_{\rm V} = \frac{\tau_0}{2} \hspace{0.15cm} {= 0.5\,{\rm &micro; s}}\hspace{0.05cm},
 
:$$m_{\rm V} = \frac{\tau_0}{2} \hspace{0.15cm} {= 0.5\,{\rm &micro; s}}\hspace{0.05cm},
 
  \hspace{0.2cm}T_{\rm V} = \sigma_{\rm V} =\frac{\tau_0}{2} \hspace{0.15cm}\underline {= 0.5\,{\rm &micro; s}}
 
  \hspace{0.2cm}T_{\rm V} = \sigma_{\rm V} =\frac{\tau_0}{2} \hspace{0.15cm}\underline {= 0.5\,{\rm &micro; s}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Beim Kanal &nbsp;$\rm B$&nbsp; sind die Impulsgewichte $1/(1+0.5^2) = 0.8$ (für $\tau = 0$) und $0.2$ (für $\tau = 1 \ \rm &micro; s$).
+
For channel &nbsp;$\rm B$&nbsp; the Dirac weights are&nbsp; $1/(1+0.5^2) = 0.8$&nbsp; $($for&nbsp; $\tau = 0)$&nbsp; and&nbsp; $0.2$&nbsp; $($for&nbsp; $\tau = 1 \ \rm &micro; s)$.
* Damit erhält man für den linearen und den quadratischen Mittelwert nach den [[Stochastische_Signaltheorie/Erwartungswerte_und_Momente#Momentenberechnung_als_Scharmittelwert|grundlegenden Gesetzen]] der Statistik:
+
* According to the&nbsp; [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|basic laws]]&nbsp; of statistics, the non-central first and second order moments are:
 
:$$m_{\rm 1} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.8 \cdot 0 + 0.2 \cdot 1\,{\rm &micro; s} = 0.2\,{\rm &micro; s} \hspace{0.05cm},\hspace{0.5cm}
 
:$$m_{\rm 1} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.8 \cdot 0 + 0.2 \cdot 1\,{\rm &micro; s} = 0.2\,{\rm &micro; s} \hspace{0.05cm},\hspace{0.5cm}
 
m_{\rm 2} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.8 \cdot 0^2 + 0.2 \cdot (1\,{\rm &micro; s})^2 = 0.2\,({\rm &micro; s})^2 \hspace{0.05cm}.$$
 
m_{\rm 2} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.8 \cdot 0^2 + 0.2 \cdot (1\,{\rm &micro; s})^2 = 0.2\,({\rm &micro; s})^2 \hspace{0.05cm}.$$
  
*Zum gesuchten Ergebnis kommt man mit dem [[Stochastische_Signaltheorie/Erwartungswerte_und_Momente#Einige_h.C3.A4ufig_benutzte_Zentralmomente| Satz von Steiner]].
+
*To get the result you are looking for you can use the&nbsp; [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments#Some_common_central_moments| Steiner's Theorem]]:
 
:$$\sigma_{\rm V}^2 = m_{\rm 2} - m_{\rm 1}^2 = 0.2\,({\rm &micro; s})^2 - (0.2\,{\rm &micro; s})^2 = 0.16\,({\rm &micro; s})^2
 
:$$\sigma_{\rm V}^2 = m_{\rm 2} - m_{\rm 1}^2 = 0.2\,({\rm &micro; s})^2 - (0.2\,{\rm &micro; s})^2 = 0.16\,({\rm &micro; s})^2
 
   \hspace{0.3cm}\Rightarrow \hspace{0.3cm}T_{\rm V} = \sigma_{\rm V}  \hspace{0.15cm}\underline {= 0.4\,{\rm &micro; s}}\hspace{0.05cm}.$$
 
   \hspace{0.3cm}\Rightarrow \hspace{0.3cm}T_{\rm V} = \sigma_{\rm V}  \hspace{0.15cm}\underline {= 0.4\,{\rm &micro; s}}\hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Die Frequenz&ndash;Korrelationsfunktion ist die Fouriertransformierte von ${\it \Phi}_{\rm V}(\tau) = \delta(\tau) + \delta(\tau \, &ndash; \tau_0)$:
+
'''(4)'''&nbsp; The frequency correlation function is the Fourier transform of&nbsp; ${\it \Phi}_{\rm V}(\tau) = \delta(\tau) + \delta(\tau \, &ndash; \tau_0)$:
 
:$$\varphi_{\rm F}(\Delta f) = 1 + {\rm exp}(-{\rm j} \cdot 2\pi \cdot \Delta f \cdot \tau_0) = 1 + {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) -{\rm j} \cdot  {\rm sin}(2\pi \cdot \Delta f \cdot \tau_0) $$
 
:$$\varphi_{\rm F}(\Delta f) = 1 + {\rm exp}(-{\rm j} \cdot 2\pi \cdot \Delta f \cdot \tau_0) = 1 + {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) -{\rm j} \cdot  {\rm sin}(2\pi \cdot \Delta f \cdot \tau_0) $$
[[File:P_ID2186__Mob_Z_2_7d.png|right|frame|Frequenzkorrelationsfunktion und Kohärenzbandbreite]]
+
[[File:P_ID2186__Mob_Z_2_7d.png|right|frame|Frequency correlation function and coherence bandwidth]]
 
:$$\Rightarrow \hspace{0.3cm} |\varphi_{\rm F}(\Delta f)| = \sqrt{2 +  2 \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) }\hspace{0.05cm}.$$
 
:$$\Rightarrow \hspace{0.3cm} |\varphi_{\rm F}(\Delta f)| = \sqrt{2 +  2 \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) }\hspace{0.05cm}.$$
  
*Das Funktionsmaximum bei $\Delta f = 0$ ist gleich $2$.  
+
*The maximum at&nbsp; $\Delta f = 0$&nbsp; is equal to&nbsp; $2$.  
*Deshalb lautet die Bestimmungsgleichung für $B_{\rm K}$:
+
*Therefore the equation to determine $B_{\rm K}$ is
:$$|\varphi_{\rm F}(B_{\rm K})| = 1 \hspace{0.3cm} $$
+
:$$|\varphi_{\rm F}(B_{\rm K})| = 1 \hspace{0.3cm}  
:$$\Rightarrow \hspace{0.3cm}|\varphi_{\rm F}(B_{\rm K})|^2 = 1
+
\Rightarrow \hspace{0.3cm}|\varphi_{\rm F}(B_{\rm K})|^2 = 1 $$
\hspace{0.3cm} \Rightarrow \hspace{0.3cm}2 + 2 \cdot {\rm cos}(2\pi \cdot B_{\rm K} \cdot \tau_0) = 1$$
+
:$$ \Rightarrow \hspace{0.3cm}2 + 2 \cdot {\rm cos}(2\pi \cdot B_{\rm K} \cdot \tau_0) = 1 \hspace{0.3cm}
:$$\Rightarrow \hspace{0.3cm}{\rm cos}(2\pi \cdot B_{\rm K} \cdot \tau_0) = -0.5 \hspace{0.3cm} $$
+
\Rightarrow \hspace{0.3cm}{\rm cos}(2\pi \cdot B_{\rm K} \cdot \tau_0) = -0.5 \hspace{0.3cm} $$
 
:$$\Rightarrow \hspace{0.3cm}2\pi \cdot B_{\rm K} \cdot \tau_0 = \frac{2\pi}{3}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}B_{\rm K} = \frac{1}{3\tau_0} = 333\,{\rm kHz}\hspace{0.05cm}.$$
 
:$$\Rightarrow \hspace{0.3cm}2\pi \cdot B_{\rm K} \cdot \tau_0 = \frac{2\pi}{3}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}B_{\rm K} = \frac{1}{3\tau_0} = 333\,{\rm kHz}\hspace{0.05cm}.$$
  
*Richtig ist somit der <u>Lösungsvorschlag 1</u>. Die Grafik (blaue Kurve) verdeutlicht das Ergebnis.
+
<u>Solution 1</u> is correct.&nbsp; The graph (blue curve) illustrates the result.
  
  
 +
'''(5)'''&nbsp; For channel &nbsp;${\rm B}$&nbsp; the corresponding equations are
 +
:$${\it \Phi}_{\rm V}(\tau) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1^2 \cdot \delta(\tau) + (-0.5)^2 \cdot \delta(\tau - \tau_0) \hspace{0.05cm},\hspace{0.05cm}$$
 +
:$$\varphi_{\rm F}(\Delta f) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  1 + 0.25 \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) -{\rm j} \cdot 0.25 \cdot  {\rm sin}(2\pi \cdot \Delta f \cdot \tau_0)\hspace{0.05cm},$$
 +
:$$|\varphi_{\rm F}(\Delta f)| \hspace{-0.1cm} \ = \  \sqrt{\frac{17}{16} +  \frac{1}{2} \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) }\hspace{0.3cm}$$
 +
:$$\Rightarrow \hspace{0.3cm}{\rm Max}\hspace{0.1cm}|\varphi_{\rm F}(\Delta f)| = 1.25\hspace{0.05cm},\hspace{0.2cm}{\rm Min}\hspace{0.1cm}|\varphi_{\rm F}(\Delta f)| = 0.75\hspace{0.05cm}.$$
  
'''(5)'''&nbsp; Für den Kanal &nbsp;${\rm B}$&nbsp; lauten die entsprechenden Gleichungen:
+
You can see from this result that the&nbsp; $50\%$&ndash;coherence bandwidth cannot be specified here &nbsp; &rArr; &nbsp;  <u>solution 4</u> is correct.
:$${\it \Phi}_{\rm V}(\tau) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1^2 \cdot \delta(\tau) + (-0.5)^2 \cdot \delta(\tau - \tau_0) \hspace{0.05cm},\hspace{0.05cm}
 
\varphi_{\rm F}(\Delta f) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 + 0.25 \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) -{\rm j} \cdot 0.25 \cdot  {\rm sin}(2\pi \cdot \Delta f \cdot \tau_0)\hspace{0.05cm},$$
 
:$$|\varphi_{\rm F}(\Delta f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm}= \sqrt{\frac{17}{16} +  \frac{1}{2} \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) }\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}{\rm Max}\hspace{0.1cm}|\varphi_{\rm F}(\Delta f)| = 1.25\hspace{0.05cm},\hspace{0.2cm}{\rm Min}\hspace{0.1cm}|\varphi_{\rm F}(\Delta f)| = 0.75\hspace{0.05cm}.$$
 
  
*Man erkennt an diesem Resultat, dass hier die $50\%$&ndash;Kohärenzbandbreite nicht angebbar ist.
 
*Richtig ist also der <u>Lösungsvorschlag 4</u>.
 
  
 +
This result is the reason why there are different definitions for the coherence bandwidth in the literature, for example
 +
* the&nbsp; $90\%$&ndash;coherence bandwidth&nbsp; $($in the example&nbsp; $B_{\rm K, \hspace{0.03cm} 90\%} =184 \ \ \rm kHz$$)$,
 +
* the very simple approximation&nbsp; $B_{\rm K}\hspace{0.01cm}'$&nbsp; given above&nbsp; $($in the example&nbsp; $B_{\rm K}\hspace{0.01cm}' =1 \ \ \rm MHz)$.
  
Dieses Ergebnis ist der Grund dafür, dass es für die Kohärenzbandbreite in der Literatur unterschiedliche Definitionen gibt, zum Beispiel:
 
* die $90\%$&ndash;Kohärenzbandbreite (im Beispiel wäre $B_{\rm K, \hspace{0.03cm} 90\%} =184 \ \rm kHz$),
 
* die vorne angegebene sehr einfache Näherung $B_{\rm K}\hspace{0.01cm}'$ (im Beispiel $B_{\rm K}\hspace{0.01cm}' =1 \ \rm MHz$).
 
  
 +
You can see from these numerical values that all the information on this topic is very vague and that the individual "coherence bandwidths" can be very different.
  
Man erkennt bereits an diesen Zahlenwerten, dass alle diesbezüglichen Angaben sehr vage sind und sich die einzelnen &bdquo;Kohärenzbandbreiten&rdquo; um Faktoren unterscheiden können.
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
+
[[Category:Mobile Communications: Exercises|^2.3 The GWSSUS Channel Model^]]
[[Category:Exercises for Mobile Communications|^2.3 The GWSSUS Channel Model^]]
 

Latest revision as of 13:41, 17 February 2022

Two two-path channels

For the GWSSUS model, two parameters are given, which both statistically capture the resulting delay  $\tau$.  More information on the topic "Multipath Propagation" can be found in the section  Parameters of the GWSSUS model  of the theory part.

  • The  delay spread  $T_{\rm V}$  is by definition equal to the standard deviation of the random variable  $\tau$.
    This can be determined from the probability density function  $f_{\rm V}(\tau)$.  The PDF  $f_{\rm V}(\tau)$  has the same shape as the delay power-spectral density  ${\it \Phi}_{\rm V}(\tau)$.
  • The  coherence bandwidth  $B_{\rm K}$  describes the same situation in the frequency domain.
    It is defined as the value of $\Delta f$ at which the magnitude of the frequency correlation function  $\varphi_{\rm F}(\Delta f)$  first drops to half its maximum value:
$$|\varphi_{\rm F}(\Delta f = B_{\rm K})| \stackrel {!}{=} {1}/{2} \cdot |\varphi_{\rm F}(\Delta f = 0)| \hspace{0.05cm}.$$

The relationship between  ${\it \Phi}_{\rm V}(\tau)$  and  $\varphi_{\rm F}(\Delta f)$  is given by the Fourier transform:

$$\varphi_{\rm F}(\Delta f) \hspace{0.2cm} {\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} {\it \Phi}_{\rm V}(\tau)\hspace{0.05cm}.$$
  • Both definitions are only partially suitable for a time-invariant channel.
  • For a time-invariant two-path channel (i.e. one with constant path weights according to the above graph), the following approximation for the coherence bandwidth is often used:
$$B_{\rm K}\hspace{0.01cm}' = \frac{1}{\tau_{\rm max} - \tau_{\rm min}} \hspace{0.05cm}.$$


In this task we want to clarify

  • why there are different definitions for the coherence bandwidth in the literature,
  • which connection exists between  $B_{\rm K}$  and  $B_{\rm K}\hspace{0.01cm}'$,  and
  • which definitions make sense for which boundary conditions.




Notes:



Questionnaire

1

What is the approximate coherence bandwidth  $B_{\rm K}\hspace{0.01cm}'$  for channels  $\rm A$  and  $\rm B$?

Channel  ${\rm A} \text{:} \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' \ = \ $

$\ \ \rm kHz$
Channel  ${\rm B} \text{:} \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' \ = \ $

$\ \ \rm kHz$

2

Let  $G$  be the weight of the second path.  What is the PDF  $f_{\rm V}(\tau)$?

$f_{\rm V}(\tau) = \delta(\tau) + G \cdot \delta(\tau \, –\tau_0)$,
$f_{\rm V}(\tau) = \delta(\tau) + G^2 \cdot \delta(\tau \, –\tau_0)$,
$f_{\rm V}(\tau) = 1/(1 + G^2) \cdot \delta(\tau) + G^2/(1 + G^2) \cdot \delta(\tau \, –\tau_0)$.

3

Calculate the delay spread  $ T_{\rm V}$.

Channel  ${\rm A} \text{:} \hspace{0.4cm} T_{\rm V} \ = \ $

$\ \rm µ s$
Channel  ${\rm B} \text{:} \hspace{0.4cm} T_{\rm V} \ = \ $

$\ \rm µ s$

4

What is the coherence bandwidth  $B_{\rm K}$  of channel  ${\rm A}$ ?

  $B_{\rm K} = 333 \ \rm kHz$.
  $B_{\rm K} = 500 \ \rm kHz$.
  $B_{\rm K} = 1 \ \rm MHz$.
$B_{\rm K}$  cannot be calculated according to this definition.

5

What is the coherence bandwidth  $B_{\rm K}$  of channel  ${\rm B}$ ?

  $B_{\rm K} = 333 \ \rm kHz$.
  $B_{\rm K} = 500 \ \rm kHz$.
  $B_{\rm K} = 1 \ \ \rm MHz$.
$B_{\rm K}$  cannot be calculated according to this definition.


Solution

(1)  For both channels, the delay difference is  $\Delta \tau = \tau_{\rm max} \, - \tau_{\rm min} = 1 \ \ \rm µ s$.

  • That's why both channels have the same value:
$$B_{\rm K}\hspace{0.01cm}' \ \ \underline {= 1000 \ \rm kHz}.$$


(2)  The graphs refer to the impulse response  $h(\tau)$.

  • To obtain the delay–power-spectral density, the weights must be squared:
$${\it \Phi}_{\rm V}(\tau) = 1^2 \cdot \delta(\tau) + G^2 \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.$$
  • The integral of  ${\it \Phi}_{\rm V}(\tau)$  is therefore  $1 + G^2$.
  • The probability density function  $\rm (PDF)$, however, must have "area $1$" $($i.e., the sum of the two Dirac weights must be $1)$.  From this follows:
$$f_{\rm V}(\tau) = \frac{1}{1 + G^2} \cdot \delta(\tau) + \frac{G^2}{1 + G^2} \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.$$
  • Only solution 3 is correct.
  • The first option does not describe the PDF  $f_{\rm V}(\tau)$, but the impulse response  $h(\tau)$.
  • The second equation specifies the delay power-spectral density  ${\it \Phi}_{\rm V}(\tau)$.


(3)  For channel  $\rm A$  the two impulse weights are equal.  This means that the mean value  $m_{\rm V}$  and the standard deviation  $\sigma_{\rm V} = T_{\rm V}$  can be computed simply:

$$m_{\rm V} = \frac{\tau_0}{2} \hspace{0.15cm} {= 0.5\,{\rm µ s}}\hspace{0.05cm}, \hspace{0.2cm}T_{\rm V} = \sigma_{\rm V} =\frac{\tau_0}{2} \hspace{0.15cm}\underline {= 0.5\,{\rm µ s}} \hspace{0.05cm}.$$

For channel  $\rm B$  the Dirac weights are  $1/(1+0.5^2) = 0.8$  $($for  $\tau = 0)$  and  $0.2$  $($for  $\tau = 1 \ \rm µ s)$.

  • According to the  basic laws  of statistics, the non-central first and second order moments are:
$$m_{\rm 1} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.8 \cdot 0 + 0.2 \cdot 1\,{\rm µ s} = 0.2\,{\rm µ s} \hspace{0.05cm},\hspace{0.5cm} m_{\rm 2} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.8 \cdot 0^2 + 0.2 \cdot (1\,{\rm µ s})^2 = 0.2\,({\rm µ s})^2 \hspace{0.05cm}.$$
$$\sigma_{\rm V}^2 = m_{\rm 2} - m_{\rm 1}^2 = 0.2\,({\rm µ s})^2 - (0.2\,{\rm µ s})^2 = 0.16\,({\rm µ s})^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}T_{\rm V} = \sigma_{\rm V} \hspace{0.15cm}\underline {= 0.4\,{\rm µ s}}\hspace{0.05cm}.$$


(4)  The frequency correlation function is the Fourier transform of  ${\it \Phi}_{\rm V}(\tau) = \delta(\tau) + \delta(\tau \, – \tau_0)$:

$$\varphi_{\rm F}(\Delta f) = 1 + {\rm exp}(-{\rm j} \cdot 2\pi \cdot \Delta f \cdot \tau_0) = 1 + {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) -{\rm j} \cdot {\rm sin}(2\pi \cdot \Delta f \cdot \tau_0) $$
Frequency correlation function and coherence bandwidth
$$\Rightarrow \hspace{0.3cm} |\varphi_{\rm F}(\Delta f)| = \sqrt{2 + 2 \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) }\hspace{0.05cm}.$$
  • The maximum at  $\Delta f = 0$  is equal to  $2$.
  • Therefore the equation to determine $B_{\rm K}$ is
$$|\varphi_{\rm F}(B_{\rm K})| = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}|\varphi_{\rm F}(B_{\rm K})|^2 = 1 $$
$$ \Rightarrow \hspace{0.3cm}2 + 2 \cdot {\rm cos}(2\pi \cdot B_{\rm K} \cdot \tau_0) = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm cos}(2\pi \cdot B_{\rm K} \cdot \tau_0) = -0.5 \hspace{0.3cm} $$
$$\Rightarrow \hspace{0.3cm}2\pi \cdot B_{\rm K} \cdot \tau_0 = \frac{2\pi}{3}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}B_{\rm K} = \frac{1}{3\tau_0} = 333\,{\rm kHz}\hspace{0.05cm}.$$

Solution 1 is correct.  The graph (blue curve) illustrates the result.


(5)  For channel  ${\rm B}$  the corresponding equations are

$${\it \Phi}_{\rm V}(\tau) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1^2 \cdot \delta(\tau) + (-0.5)^2 \cdot \delta(\tau - \tau_0) \hspace{0.05cm},\hspace{0.05cm}$$
$$\varphi_{\rm F}(\Delta f) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 + 0.25 \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) -{\rm j} \cdot 0.25 \cdot {\rm sin}(2\pi \cdot \Delta f \cdot \tau_0)\hspace{0.05cm},$$
$$|\varphi_{\rm F}(\Delta f)| \hspace{-0.1cm} \ = \ \sqrt{\frac{17}{16} + \frac{1}{2} \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) }\hspace{0.3cm}$$
$$\Rightarrow \hspace{0.3cm}{\rm Max}\hspace{0.1cm}|\varphi_{\rm F}(\Delta f)| = 1.25\hspace{0.05cm},\hspace{0.2cm}{\rm Min}\hspace{0.1cm}|\varphi_{\rm F}(\Delta f)| = 0.75\hspace{0.05cm}.$$

You can see from this result that the  $50\%$–coherence bandwidth cannot be specified here   ⇒   solution 4 is correct.


This result is the reason why there are different definitions for the coherence bandwidth in the literature, for example

  • the  $90\%$–coherence bandwidth  $($in the example  $B_{\rm K, \hspace{0.03cm} 90\%} =184 \ \ \rm kHz$$)$,
  • the very simple approximation  $B_{\rm K}\hspace{0.01cm}'$  given above  $($in the example  $B_{\rm K}\hspace{0.01cm}' =1 \ \ \rm MHz)$.


You can see from these numerical values that all the information on this topic is very vague and that the individual "coherence bandwidths" can be very different.