Difference between revisions of "Aufgaben:Exercise 2.7Z: Coherence Bandwidth of the LTI Two-Path Channel"

From LNTwww
m (Text replacement - "power spectral density" to "power-spectral density")
 
(19 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
   
 
   
{{quiz-Header|Buchseite=Mobile Kommunikation/Das GWSSUS–Kanalmodell}}
+
{{quiz-Header|Buchseite=Mobile_Communications/The_GWSSUS_Channel_Model}}
  
[[File:P_ID2178__Mob_Z_2_7.png|right|frame|Zwei Zweiwegekanäle]]
+
[[File:EN_Mob_A_2_7Z.png|right|frame|Two two-path channels]]
For the GWSSUS–model, two parameters are given, which both statistically capture the resulting delay  $\tau$ . More information on the topic „multipath propagation” can be found in section  [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell#Simulation_gem.C3.A4.C3.9F_dem_GWSSUS.E2.80.93Modell| Simulation gemäß dem GWSSUS–Modell]]  of the theory part.
+
For the GWSSUS model, two parameters are given, which both statistically capture the resulting delay  $\tau$.  More information on the topic "Multipath Propagation" can be found in the section  [[Mobile_Communications/The_GWSSUS_Channel_Model#Parameters_of_the_GWSSUS_model| Parameters of the GWSSUS model]]  of the theory part.
* The &nbsp;<b>delay spread</b>&nbsp; $T_{\rm V}$&nbsp; is by definition equal to the standard deviation of the random variable &nbsp;$\tau$. <br>This can be determined from the probability density&nbsp; $f_{\rm V}(\tau)$&nbsp;. The PDF&nbsp; $f_{\rm V}(\tau)$&nbsp; has the same shape as the delay power density spectrum&nbsp; ${\it \Phi}_{\rm V}(\tau)$.  
+
* The &nbsp;<b>delay spread</b>&nbsp; $T_{\rm V}$&nbsp; is by definition equal to the standard deviation of the random variable &nbsp;$\tau$. <br>This can be determined from the probability density function&nbsp; $f_{\rm V}(\tau)$.&nbsp; The PDF&nbsp; $f_{\rm V}(\tau)$&nbsp; has the same shape as the delay power-spectral density&nbsp; ${\it \Phi}_{\rm V}(\tau)$.  
* The &nbsp;<b>coherence bandwidth</b>&nbsp; $B_{\rm K}$&nbsp; describes the same situation in the frequency domain. <br> It is defined as the value of $\delta f$ at which the magnitude of the frequency correlation function&nbsp; $\varphi_{\rm F}(\delta f)$&nbsp; first drops to hlf its maximum value:
+
* The &nbsp;<b>coherence bandwidth</b>&nbsp; $B_{\rm K}$&nbsp; describes the same situation in the frequency domain. <br> It is defined as the value of $\Delta f$ at which the magnitude of the frequency correlation function&nbsp; $\varphi_{\rm F}(\Delta f)$&nbsp; first drops to half its maximum value:
 
:$$|\varphi_{\rm F}(\Delta f = B_{\rm K})| \stackrel {!}{=} {1}/{2} \cdot |\varphi_{\rm F}(\Delta f = 0)| \hspace{0.05cm}.$$
 
:$$|\varphi_{\rm F}(\Delta f = B_{\rm K})| \stackrel {!}{=} {1}/{2} \cdot |\varphi_{\rm F}(\Delta f = 0)| \hspace{0.05cm}.$$
  
Line 13: Line 13:
  
 
*Both definitions are only partially suitable for a time-invariant channel.  
 
*Both definitions are only partially suitable for a time-invariant channel.  
*For a time invariant two-path channel (i.e. one with constant path weights according to the above graph), the following approximation for the coherence bandwidth is often used:
+
*For a time-invariant two-path channel (i.e. one with constant path weights according to the above graph), the following approximation for the coherence bandwidth is often used:
 
:$$B_{\rm K}\hspace{0.01cm}' = \frac{1}{\tau_{\rm max} - \tau_{\rm min}} \hspace{0.05cm}.$$
 
:$$B_{\rm K}\hspace{0.01cm}' = \frac{1}{\tau_{\rm max} - \tau_{\rm min}} \hspace{0.05cm}.$$
  
Line 19: Line 19:
 
In this task we want to clarify
 
In this task we want to clarify
 
* why there are different definitions for the coherence bandwidth in the literature,
 
* why there are different definitions for the coherence bandwidth in the literature,
* which connection exists between&nbsp; $B_{\rm K}$&nbsp; and&nbsp; $B_{\rm K}\hspace{0.01cm}'$&nbsp; and
+
* which connection exists between&nbsp; $B_{\rm K}$&nbsp; and&nbsp; $B_{\rm K}\hspace{0.01cm}'$,&nbsp; and
 
* which definitions make sense for which boundary conditions.
 
* which definitions make sense for which boundary conditions.
  
Line 28: Line 28:
  
 
''Notes:''
 
''Notes:''
*This task belongs to the chapter&nbsp; [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell| Das GWSSUS&ndash;Kanalmodell]].
+
*This exercise belongs to the chapter&nbsp; [[Mobile_Communications/The_GWSSUS_Channel_Model|The GWSSUS Channel Model]].
*This task also refers to some theory pages in chapter&nbsp;  [[Mobile_Kommunikation/Mehrwegeempfang_beim_Mobilfunk| Mehrwegeempfang beim Mobilfunk]].
+
*This task also refers to some theory pages in chapter&nbsp;  [[Mobile_Communications/Multi-Path_Reception_in_Mobile_Communications| Multi-Path Reception in Mobile Communications]].
 
   
 
   
  
Line 36: Line 36:
 
===Questionnaire===
 
===Questionnaire===
 
<quiz display=simple>
 
<quiz display=simple>
{What is the approximate coherence bandwidth &nbsp; $B_{\rm K}\hspace{0.01cm}'$&nbsp; for channels &nbsp;$\rm A$&nbsp; and &nbsp;$\rm B$?
+
{What is the approximate coherence bandwidth&nbsp; $B_{\rm K}\hspace{0.01cm}'$&nbsp; for channels &nbsp;$\rm A$&nbsp; and &nbsp;$\rm B$?
 
|type="{}"}
 
|type="{}"}
 
Channel &nbsp;${\rm A} \text{:} \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' \ = \ ${ 1000 3% } $\ \ \rm kHz$
 
Channel &nbsp;${\rm A} \text{:} \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' \ = \ ${ 1000 3% } $\ \ \rm kHz$
 
Channel &nbsp;${\rm B} \text{:} \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' \ = \ ${ 1000 3% } $\ \ \rm kHz$
 
Channel &nbsp;${\rm B} \text{:} \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' \ = \ ${ 1000 3% } $\ \ \rm kHz$
  
{Let $G$&nbsp; be the weight of the second path. What is the PDF&nbsp; $f_{\rm V}(\tau)$?   
+
{Let&nbsp; $G$&nbsp; be the weight of the second path.&nbsp; What is the PDF&nbsp; $f_{\rm V}(\tau)$?   
 
|type="()"}
 
|type="()"}
 
- $f_{\rm V}(\tau) = \delta(\tau) + G \cdot \delta(\tau \, &ndash;\tau_0)$,
 
- $f_{\rm V}(\tau) = \delta(\tau) + G \cdot \delta(\tau \, &ndash;\tau_0)$,
Line 53: Line 53:
  
 
{What is the coherence bandwidth&nbsp; $B_{\rm K}$&nbsp; of channel &nbsp;${\rm A}$&nbsp;?
 
{What is the coherence bandwidth&nbsp; $B_{\rm K}$&nbsp; of channel &nbsp;${\rm A}$&nbsp;?
|type="[]"}
+
|type="()"}
 
+ &nbsp; $B_{\rm K} = 333 \ \rm kHz$.
 
+ &nbsp; $B_{\rm K} = 333 \ \rm kHz$.
 
- &nbsp; $B_{\rm K} = 500 \ \rm kHz$.
 
- &nbsp; $B_{\rm K} = 500 \ \rm kHz$.
Line 60: Line 60:
  
 
{What is the coherence bandwidth&nbsp; $B_{\rm K}$&nbsp; of channel &nbsp;${\rm B}$&nbsp;?
 
{What is the coherence bandwidth&nbsp; $B_{\rm K}$&nbsp; of channel &nbsp;${\rm B}$&nbsp;?
|type="[]"}
+
|type="()"}
 
- &nbsp; $B_{\rm K} = 333 \ \rm kHz$.
 
- &nbsp; $B_{\rm K} = 333 \ \rm kHz$.
 
- &nbsp; $B_{\rm K} = 500 \ \rm kHz$.
 
- &nbsp; $B_{\rm K} = 500 \ \rm kHz$.
Line 67: Line 67:
 
</quiz>
 
</quiz>
  
===Sample solution===
+
===Solution===
{{{ML-Kopf}}
+
{{ML-Kopf}}
'''(1)'''&nbsp; For both channels, the delay difference is $\Delta \tau = \tau_{\rm max} \, - \tau_{\rm min} = 1 \ \ \rm &micro; s$.
+
'''(1)'''&nbsp; For both channels, the delay difference is&nbsp; $\Delta \tau = \tau_{\rm max} \, - \tau_{\rm min} = 1 \ \ \rm &micro; s$.
 
* That's why both channels have the same value:
 
* That's why both channels have the same value:
$$B_{\rm K}\hspace{0.01cm}' \ \ \underline {= 1000 \ \rm kHz}.$$
+
:$$B_{\rm K}\hspace{0.01cm}' \ \ \underline {= 1000 \ \rm kHz}.$$
 +
 
  
'''(2)'''&nbsp; The graphs refer to the impulse response $h(\tau)$.  
+
'''(2)'''&nbsp; The graphs refer to the impulse response&nbsp; $h(\tau)$.  
*To obtain the delay&ndash;power density spectrum, the weights must be squared:
+
*To obtain the delay&ndash;power-spectral density, the weights must be squared:
 
:$${\it \Phi}_{\rm V}(\tau) = 1^2 \cdot \delta(\tau) + G^2 \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.$$
 
:$${\it \Phi}_{\rm V}(\tau) = 1^2 \cdot \delta(\tau) + G^2 \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.$$
  
*The integral of ${\it \Phi}_{\rm V}(\tau)$ is therefore $1 + G^2$.  
+
*The integral of&nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp; is therefore&nbsp; $1 + G^2$.  
*The probability density function (PDF), however, must have &bdquo;area 1&rdquo; (i.e., the sum of the two Dirac weights must be $1$). From this follows:
+
*The probability density function&nbsp; $\rm (PDF)$, however, must have "area $1$" $($i.e., the sum of the two Dirac weights must be $1)$.&nbsp; From this follows:
 
:$$f_{\rm V}(\tau) = \frac{1}{1 + G^2} \cdot \delta(\tau) + \frac{G^2}{1 + G^2} \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.$$
 
:$$f_{\rm V}(\tau) = \frac{1}{1 + G^2} \cdot \delta(\tau) + \frac{G^2}{1 + G^2} \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.$$
  
*So only <u>solution 3</u> is correct.  
+
*Only <u>solution 3</u> is correct.  
*The first option does not describe the PDF $f_{\rm V}(\tau)$, but the impulse response $h(\tau)$.  
+
*The first option does not describe the PDF&nbsp; $f_{\rm V}(\tau)$, but the impulse response&nbsp; $h(\tau)$.  
*The second equation specifies the delay &ndash;power spectral density ${\it \Phi}_{\rm V}(\tau)$.
+
*The second equation specifies the delay power-spectral density&nbsp; ${\it \Phi}_{\rm V}(\tau)$.
  
  
  
'''(3)'''&nbsp; For channel &nbsp;$\rm A$&nbsp; the two impulse weights are equal.  
+
'''(3)'''&nbsp; For channel &nbsp;$\rm A$&nbsp; the two impulse weights are equal.&nbsp; This means that the mean value&nbsp; $m_{\rm V}$&nbsp; and the standard deviation&nbsp; $\sigma_{\rm V} = T_{\rm V}$&nbsp; can be computed simply:
*This means that the mean value $m_{\rm V}$ and the standard deviation $\sigma_{\rm V} = T_{\rm V}$ can be computed simply:
 
 
:$$m_{\rm V} = \frac{\tau_0}{2} \hspace{0.15cm} {= 0.5\,{\rm &micro; s}}\hspace{0.05cm},
 
:$$m_{\rm V} = \frac{\tau_0}{2} \hspace{0.15cm} {= 0.5\,{\rm &micro; s}}\hspace{0.05cm},
 
  \hspace{0.2cm}T_{\rm V} = \sigma_{\rm V} =\frac{\tau_0}{2} \hspace{0.15cm}\underline {= 0.5\,{\rm &micro; s}}
 
  \hspace{0.2cm}T_{\rm V} = \sigma_{\rm V} =\frac{\tau_0}{2} \hspace{0.15cm}\underline {= 0.5\,{\rm &micro; s}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
For channel &nbsp;$\rm B$&nbsp; the Dirac weights are $1/(1+0.5^2) = 0.8$ (for $\tau = 0$) and $0.2$ (for $\tau = 1 \ \rm &micro; s$).
+
For channel &nbsp;$\rm B$&nbsp; the Dirac weights are&nbsp; $1/(1+0.5^2) = 0.8$&nbsp; $($for&nbsp; $\tau = 0)$&nbsp; and&nbsp; $0.2$&nbsp; $($for&nbsp; $\tau = 1 \ \rm &micro; s)$.
* According to the [[Stochastische_Signaltheorie/Erwartungswerte_und_Momente#Momentenberechnung_als_Scharmittelwert|basic laws]] of statistics, the noncentral first and second order moments are:
+
* According to the&nbsp; [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|basic laws]]&nbsp; of statistics, the non-central first and second order moments are:
 
:$$m_{\rm 1} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.8 \cdot 0 + 0.2 \cdot 1\,{\rm &micro; s} = 0.2\,{\rm &micro; s} \hspace{0.05cm},\hspace{0.5cm}
 
:$$m_{\rm 1} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.8 \cdot 0 + 0.2 \cdot 1\,{\rm &micro; s} = 0.2\,{\rm &micro; s} \hspace{0.05cm},\hspace{0.5cm}
 
m_{\rm 2} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.8 \cdot 0^2 + 0.2 \cdot (1\,{\rm &micro; s})^2 = 0.2\,({\rm &micro; s})^2 \hspace{0.05cm}.$$
 
m_{\rm 2} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.8 \cdot 0^2 + 0.2 \cdot (1\,{\rm &micro; s})^2 = 0.2\,({\rm &micro; s})^2 \hspace{0.05cm}.$$
  
*To get the result you are looking for you can use the [[Stochastische_Signaltheorie/Erwartungswerte_und_Momente#Einige_h.C3.A4ufig_benutzte_Zentralmomente| Steiner's Theorem]].
+
*To get the result you are looking for you can use the&nbsp; [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments#Some_common_central_moments| Steiner's Theorem]]:
 
:$$\sigma_{\rm V}^2 = m_{\rm 2} - m_{\rm 1}^2 = 0.2\,({\rm &micro; s})^2 - (0.2\,{\rm &micro; s})^2 = 0.16\,({\rm &micro; s})^2
 
:$$\sigma_{\rm V}^2 = m_{\rm 2} - m_{\rm 1}^2 = 0.2\,({\rm &micro; s})^2 - (0.2\,{\rm &micro; s})^2 = 0.16\,({\rm &micro; s})^2
 
   \hspace{0.3cm}\Rightarrow \hspace{0.3cm}T_{\rm V} = \sigma_{\rm V}  \hspace{0.15cm}\underline {= 0.4\,{\rm &micro; s}}\hspace{0.05cm}.$$
 
   \hspace{0.3cm}\Rightarrow \hspace{0.3cm}T_{\rm V} = \sigma_{\rm V}  \hspace{0.15cm}\underline {= 0.4\,{\rm &micro; s}}\hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; The frequency correlation function is the Fourier transform of ${\it \Phi}_{\rm V}(\tau) = \delta(\tau) + \delta(\tau \, &ndash; \tau_0)$:
+
'''(4)'''&nbsp; The frequency correlation function is the Fourier transform of&nbsp; ${\it \Phi}_{\rm V}(\tau) = \delta(\tau) + \delta(\tau \, &ndash; \tau_0)$:
 
:$$\varphi_{\rm F}(\Delta f) = 1 + {\rm exp}(-{\rm j} \cdot 2\pi \cdot \Delta f \cdot \tau_0) = 1 + {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) -{\rm j} \cdot  {\rm sin}(2\pi \cdot \Delta f \cdot \tau_0) $$
 
:$$\varphi_{\rm F}(\Delta f) = 1 + {\rm exp}(-{\rm j} \cdot 2\pi \cdot \Delta f \cdot \tau_0) = 1 + {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) -{\rm j} \cdot  {\rm sin}(2\pi \cdot \Delta f \cdot \tau_0) $$
 
[[File:P_ID2186__Mob_Z_2_7d.png|right|frame|Frequency correlation function and coherence bandwidth]]
 
[[File:P_ID2186__Mob_Z_2_7d.png|right|frame|Frequency correlation function and coherence bandwidth]]
 
:$$\Rightarrow \hspace{0.3cm} |\varphi_{\rm F}(\Delta f)| = \sqrt{2 +  2 \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) }\hspace{0.05cm}.$$
 
:$$\Rightarrow \hspace{0.3cm} |\varphi_{\rm F}(\Delta f)| = \sqrt{2 +  2 \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) }\hspace{0.05cm}.$$
  
*The maximum at $\delta f = 0$ is equal to $2$.  
+
*The maximum at&nbsp; $\Delta f = 0$&nbsp; is equal to&nbsp; $2$.  
 
*Therefore the equation to determine $B_{\rm K}$ is
 
*Therefore the equation to determine $B_{\rm K}$ is
$$|\varphi_{\rm F}(B_{\rm K})| = 1 \hspace{0.3cm} $$
+
:$$|\varphi_{\rm F}(B_{\rm K})| = 1 \hspace{0.3cm}  
$$\Rightarrow \hspace{0.3cm}|\varphi_{\rm F}(B_{\rm K})|^2 = 1
+
\Rightarrow \hspace{0.3cm}|\varphi_{\rm F}(B_{\rm K})|^2 = 1 $$
\hspace{0.3cm} \Rightarrow \hspace{0.3cm}2 + 2 \cdot {\rm cos}(2\pi \cdot B_{\rm K} \cdot \tau_0) = 1$$
+
:$$ \Rightarrow \hspace{0.3cm}2 + 2 \cdot {\rm cos}(2\pi \cdot B_{\rm K} \cdot \tau_0) = 1 \hspace{0.3cm}
$$\Rightarrow \hspace{0.3cm}{\rm cos}(2\pi \cdot B_{\rm K} \cdot \tau_0) = -0.5 \hspace{0.3cm} $$
+
\Rightarrow \hspace{0.3cm}{\rm cos}(2\pi \cdot B_{\rm K} \cdot \tau_0) = -0.5 \hspace{0.3cm} $$
$$\Rightarrow \hspace{0.3cm}2\pi \cdot B_{\rm K} \cdot \tau_0 = \frac{2\pi}{3}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}B_{\rm K} = \frac{1}{3\tau_0} = 333\,{\rm kHz}\hspace{0.05cm}.$$
+
:$$\Rightarrow \hspace{0.3cm}2\pi \cdot B_{\rm K} \cdot \tau_0 = \frac{2\pi}{3}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}B_{\rm K} = \frac{1}{3\tau_0} = 333\,{\rm kHz}\hspace{0.05cm}.$$
 +
 
 +
<u>Solution 1</u> is correct.&nbsp; The graph (blue curve) illustrates the result.
  
*<u>Solution 1</u> is therefore correct. The graph (blue curve) illustrates the result.
 
  
 
'''(5)'''&nbsp; For channel &nbsp;${\rm B}$&nbsp; the corresponding equations are
 
'''(5)'''&nbsp; For channel &nbsp;${\rm B}$&nbsp; the corresponding equations are
:$${\it \Phi}_{\rm V}(\tau) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1^2 \cdot \delta(\tau) + (-0.5)^2 \cdot \delta(\tau - \tau_0) \hspace{0.05cm},\hspace{0.05cm}
+
:$${\it \Phi}_{\rm V}(\tau) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1^2 \cdot \delta(\tau) + (-0.5)^2 \cdot \delta(\tau - \tau_0) \hspace{0.05cm},\hspace{0.05cm}$$
\varphi_{\rm F}(\Delta f) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  1 + 0.25 \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) -{\rm j} \cdot 0.25 \cdot  {\rm sin}(2\pi \cdot \Delta f \cdot \tau_0)\hspace{0.05cm},$$
+
:$$\varphi_{\rm F}(\Delta f) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  1 + 0.25 \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) -{\rm j} \cdot 0.25 \cdot  {\rm sin}(2\pi \cdot \Delta f \cdot \tau_0)\hspace{0.05cm},$$
:$$|\varphi_{\rm F}(\Delta f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm}= \sqrt{\frac{17}{16} +  \frac{1}{2} \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) }\hspace{0.3cm}
+
:$$|\varphi_{\rm F}(\Delta f)| \hspace{-0.1cm} \ = \ \sqrt{\frac{17}{16} +  \frac{1}{2} \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) }\hspace{0.3cm}$$
\Rightarrow \hspace{0.3cm}{\rm Max}\hspace{0.1cm}|\varphi_{\rm F}(\Delta f)| = 1.25\hspace{0.05cm},\hspace{0.2cm}{\rm Min}\hspace{0.1cm}|\varphi_{\rm F}(\Delta f)| = 0.75\hspace{0.05cm}.$$
+
:$$\Rightarrow \hspace{0.3cm}{\rm Max}\hspace{0.1cm}|\varphi_{\rm F}(\Delta f)| = 1.25\hspace{0.05cm},\hspace{0.2cm}{\rm Min}\hspace{0.1cm}|\varphi_{\rm F}(\Delta f)| = 0.75\hspace{0.05cm}.$$
  
*You can see from this result that the $50\%$&ndash;coherence bandwidth cannot be specified here.
+
You can see from this result that the&nbsp; $50\%$&ndash;coherence bandwidth cannot be specified here &nbsp; &rArr; &nbsp;  <u>solution 4</u> is correct.
*Therefore, <u>solution 4</u> is correct.
 
  
  
This result is the reason why there are different definitions for the coherence range in the literature, for example
+
This result is the reason why there are different definitions for the coherence bandwidth in the literature, for example
* the $90\%$&ndash;coherence bandwidth (in the example $B_{\rm K, \hspace{0.03cm} 90\%} =184 \ \ \rm kHz$),
+
* the&nbsp; $90\%$&ndash;coherence bandwidth&nbsp; $($in the example&nbsp; $B_{\rm K, \hspace{0.03cm} 90\%} =184 \ \ \rm kHz$$)$,
* the very simple approximation $B_{\rm K}\hspace{0.01cm}'$ given above (in the example $B_{\rm K}\hspace{0.01cm}' =1 \ \ \rm MHz$)
+
* the very simple approximation&nbsp; $B_{\rm K}\hspace{0.01cm}'$&nbsp; given above&nbsp; $($in the example&nbsp; $B_{\rm K}\hspace{0.01cm}' =1 \ \ \rm MHz)$.
  
  
You can see from these numerical values that all the information on this is very vague and that the individual &bdquo;coherence bandwidths&rdquo; can be very different.
+
You can see from these numerical values that all the information on this topic is very vague and that the individual "coherence bandwidths" can be very different.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
[[Category:Exercises for Mobile Communications|^2.3 The GWSSUS Channel Model^]]
+
[[Category:Mobile Communications: Exercises|^2.3 The GWSSUS Channel Model^]]

Latest revision as of 13:41, 17 February 2022

Two two-path channels

For the GWSSUS model, two parameters are given, which both statistically capture the resulting delay  $\tau$.  More information on the topic "Multipath Propagation" can be found in the section  Parameters of the GWSSUS model  of the theory part.

  • The  delay spread  $T_{\rm V}$  is by definition equal to the standard deviation of the random variable  $\tau$.
    This can be determined from the probability density function  $f_{\rm V}(\tau)$.  The PDF  $f_{\rm V}(\tau)$  has the same shape as the delay power-spectral density  ${\it \Phi}_{\rm V}(\tau)$.
  • The  coherence bandwidth  $B_{\rm K}$  describes the same situation in the frequency domain.
    It is defined as the value of $\Delta f$ at which the magnitude of the frequency correlation function  $\varphi_{\rm F}(\Delta f)$  first drops to half its maximum value:
$$|\varphi_{\rm F}(\Delta f = B_{\rm K})| \stackrel {!}{=} {1}/{2} \cdot |\varphi_{\rm F}(\Delta f = 0)| \hspace{0.05cm}.$$

The relationship between  ${\it \Phi}_{\rm V}(\tau)$  and  $\varphi_{\rm F}(\Delta f)$  is given by the Fourier transform:

$$\varphi_{\rm F}(\Delta f) \hspace{0.2cm} {\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} {\it \Phi}_{\rm V}(\tau)\hspace{0.05cm}.$$
  • Both definitions are only partially suitable for a time-invariant channel.
  • For a time-invariant two-path channel (i.e. one with constant path weights according to the above graph), the following approximation for the coherence bandwidth is often used:
$$B_{\rm K}\hspace{0.01cm}' = \frac{1}{\tau_{\rm max} - \tau_{\rm min}} \hspace{0.05cm}.$$


In this task we want to clarify

  • why there are different definitions for the coherence bandwidth in the literature,
  • which connection exists between  $B_{\rm K}$  and  $B_{\rm K}\hspace{0.01cm}'$,  and
  • which definitions make sense for which boundary conditions.




Notes:



Questionnaire

1

What is the approximate coherence bandwidth  $B_{\rm K}\hspace{0.01cm}'$  for channels  $\rm A$  and  $\rm B$?

Channel  ${\rm A} \text{:} \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' \ = \ $

$\ \ \rm kHz$
Channel  ${\rm B} \text{:} \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' \ = \ $

$\ \ \rm kHz$

2

Let  $G$  be the weight of the second path.  What is the PDF  $f_{\rm V}(\tau)$?

$f_{\rm V}(\tau) = \delta(\tau) + G \cdot \delta(\tau \, –\tau_0)$,
$f_{\rm V}(\tau) = \delta(\tau) + G^2 \cdot \delta(\tau \, –\tau_0)$,
$f_{\rm V}(\tau) = 1/(1 + G^2) \cdot \delta(\tau) + G^2/(1 + G^2) \cdot \delta(\tau \, –\tau_0)$.

3

Calculate the delay spread  $ T_{\rm V}$.

Channel  ${\rm A} \text{:} \hspace{0.4cm} T_{\rm V} \ = \ $

$\ \rm µ s$
Channel  ${\rm B} \text{:} \hspace{0.4cm} T_{\rm V} \ = \ $

$\ \rm µ s$

4

What is the coherence bandwidth  $B_{\rm K}$  of channel  ${\rm A}$ ?

  $B_{\rm K} = 333 \ \rm kHz$.
  $B_{\rm K} = 500 \ \rm kHz$.
  $B_{\rm K} = 1 \ \rm MHz$.
$B_{\rm K}$  cannot be calculated according to this definition.

5

What is the coherence bandwidth  $B_{\rm K}$  of channel  ${\rm B}$ ?

  $B_{\rm K} = 333 \ \rm kHz$.
  $B_{\rm K} = 500 \ \rm kHz$.
  $B_{\rm K} = 1 \ \ \rm MHz$.
$B_{\rm K}$  cannot be calculated according to this definition.


Solution

(1)  For both channels, the delay difference is  $\Delta \tau = \tau_{\rm max} \, - \tau_{\rm min} = 1 \ \ \rm µ s$.

  • That's why both channels have the same value:
$$B_{\rm K}\hspace{0.01cm}' \ \ \underline {= 1000 \ \rm kHz}.$$


(2)  The graphs refer to the impulse response  $h(\tau)$.

  • To obtain the delay–power-spectral density, the weights must be squared:
$${\it \Phi}_{\rm V}(\tau) = 1^2 \cdot \delta(\tau) + G^2 \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.$$
  • The integral of  ${\it \Phi}_{\rm V}(\tau)$  is therefore  $1 + G^2$.
  • The probability density function  $\rm (PDF)$, however, must have "area $1$" $($i.e., the sum of the two Dirac weights must be $1)$.  From this follows:
$$f_{\rm V}(\tau) = \frac{1}{1 + G^2} \cdot \delta(\tau) + \frac{G^2}{1 + G^2} \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.$$
  • Only solution 3 is correct.
  • The first option does not describe the PDF  $f_{\rm V}(\tau)$, but the impulse response  $h(\tau)$.
  • The second equation specifies the delay power-spectral density  ${\it \Phi}_{\rm V}(\tau)$.


(3)  For channel  $\rm A$  the two impulse weights are equal.  This means that the mean value  $m_{\rm V}$  and the standard deviation  $\sigma_{\rm V} = T_{\rm V}$  can be computed simply:

$$m_{\rm V} = \frac{\tau_0}{2} \hspace{0.15cm} {= 0.5\,{\rm µ s}}\hspace{0.05cm}, \hspace{0.2cm}T_{\rm V} = \sigma_{\rm V} =\frac{\tau_0}{2} \hspace{0.15cm}\underline {= 0.5\,{\rm µ s}} \hspace{0.05cm}.$$

For channel  $\rm B$  the Dirac weights are  $1/(1+0.5^2) = 0.8$  $($for  $\tau = 0)$  and  $0.2$  $($for  $\tau = 1 \ \rm µ s)$.

  • According to the  basic laws  of statistics, the non-central first and second order moments are:
$$m_{\rm 1} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.8 \cdot 0 + 0.2 \cdot 1\,{\rm µ s} = 0.2\,{\rm µ s} \hspace{0.05cm},\hspace{0.5cm} m_{\rm 2} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.8 \cdot 0^2 + 0.2 \cdot (1\,{\rm µ s})^2 = 0.2\,({\rm µ s})^2 \hspace{0.05cm}.$$
$$\sigma_{\rm V}^2 = m_{\rm 2} - m_{\rm 1}^2 = 0.2\,({\rm µ s})^2 - (0.2\,{\rm µ s})^2 = 0.16\,({\rm µ s})^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}T_{\rm V} = \sigma_{\rm V} \hspace{0.15cm}\underline {= 0.4\,{\rm µ s}}\hspace{0.05cm}.$$


(4)  The frequency correlation function is the Fourier transform of  ${\it \Phi}_{\rm V}(\tau) = \delta(\tau) + \delta(\tau \, – \tau_0)$:

$$\varphi_{\rm F}(\Delta f) = 1 + {\rm exp}(-{\rm j} \cdot 2\pi \cdot \Delta f \cdot \tau_0) = 1 + {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) -{\rm j} \cdot {\rm sin}(2\pi \cdot \Delta f \cdot \tau_0) $$
Frequency correlation function and coherence bandwidth
$$\Rightarrow \hspace{0.3cm} |\varphi_{\rm F}(\Delta f)| = \sqrt{2 + 2 \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) }\hspace{0.05cm}.$$
  • The maximum at  $\Delta f = 0$  is equal to  $2$.
  • Therefore the equation to determine $B_{\rm K}$ is
$$|\varphi_{\rm F}(B_{\rm K})| = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}|\varphi_{\rm F}(B_{\rm K})|^2 = 1 $$
$$ \Rightarrow \hspace{0.3cm}2 + 2 \cdot {\rm cos}(2\pi \cdot B_{\rm K} \cdot \tau_0) = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm cos}(2\pi \cdot B_{\rm K} \cdot \tau_0) = -0.5 \hspace{0.3cm} $$
$$\Rightarrow \hspace{0.3cm}2\pi \cdot B_{\rm K} \cdot \tau_0 = \frac{2\pi}{3}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}B_{\rm K} = \frac{1}{3\tau_0} = 333\,{\rm kHz}\hspace{0.05cm}.$$

Solution 1 is correct.  The graph (blue curve) illustrates the result.


(5)  For channel  ${\rm B}$  the corresponding equations are

$${\it \Phi}_{\rm V}(\tau) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1^2 \cdot \delta(\tau) + (-0.5)^2 \cdot \delta(\tau - \tau_0) \hspace{0.05cm},\hspace{0.05cm}$$
$$\varphi_{\rm F}(\Delta f) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 + 0.25 \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) -{\rm j} \cdot 0.25 \cdot {\rm sin}(2\pi \cdot \Delta f \cdot \tau_0)\hspace{0.05cm},$$
$$|\varphi_{\rm F}(\Delta f)| \hspace{-0.1cm} \ = \ \sqrt{\frac{17}{16} + \frac{1}{2} \cdot {\rm cos}(2\pi \cdot \Delta f \cdot \tau_0) }\hspace{0.3cm}$$
$$\Rightarrow \hspace{0.3cm}{\rm Max}\hspace{0.1cm}|\varphi_{\rm F}(\Delta f)| = 1.25\hspace{0.05cm},\hspace{0.2cm}{\rm Min}\hspace{0.1cm}|\varphi_{\rm F}(\Delta f)| = 0.75\hspace{0.05cm}.$$

You can see from this result that the  $50\%$–coherence bandwidth cannot be specified here   ⇒   solution 4 is correct.


This result is the reason why there are different definitions for the coherence bandwidth in the literature, for example

  • the  $90\%$–coherence bandwidth  $($in the example  $B_{\rm K, \hspace{0.03cm} 90\%} =184 \ \ \rm kHz$$)$,
  • the very simple approximation  $B_{\rm K}\hspace{0.01cm}'$  given above  $($in the example  $B_{\rm K}\hspace{0.01cm}' =1 \ \ \rm MHz)$.


You can see from these numerical values that all the information on this topic is very vague and that the individual "coherence bandwidths" can be very different.