Difference between revisions of "Aufgaben:Exercise 3.10Z: Maximum Likelihood Decoding of Convolutional Codes"

From LNTwww
Line 1: Line 1:
 
{{quiz-Header|Buchseite=Channel_Coding/Decoding_of_Convolutional_Codes}}
 
{{quiz-Header|Buchseite=Channel_Coding/Decoding_of_Convolutional_Codes}}
  
[[File:P_ID2678__KC_Z_3_10.png|right|frame|Overall system model <br>enoder &ndash; channel &ndash; Viterbi]]
+
[[File:P_ID2678__KC_Z_3_10.png|right|frame|Overall system model,&nbsp; given for this exercise]]
The Viterbi algorithm represents the best known realization form for the maximum likelihood decoding of a convolutional code. We assume the following model here:
+
The Viterbi algorithm represents the best known realization form for the maximum likelihood decoding of a convolutional code.&nbsp; We assume here the following model:
* The information sequence&nbsp; $\underline{u}$&nbsp; is converted into the code sequence&nbsp; $\underline{x}$&nbsp; by a convolutional code. It is valid&nbsp; $u_i &#8712; \{0, \, 1\}$. In contrast, the code symbols are represented bipolar &nbsp; &#8658; &nbsp; $x_i &#8712; \{&ndash;1, \, +1\}$.
+
* The information sequence&nbsp; $\underline{u}$&nbsp; is converted into the code sequence&nbsp; $\underline{x}$&nbsp; by a convolutional code.  
* Let the channel be given by the&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Channel_.E2.80. 93_BSC|"BSC&ndash;Model"]]&nbsp; given &nbsp; &#8658; &nbsp; $y_i &#8712; \{&ndash;1, \, +1\}$&nbsp; or the&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#AWGN_channel_at_Binary_Input| "AWGN&ndash;channel"]]&nbsp; provided &nbsp; &#8658; &nbsp; real-valued received values&nbsp; $y_i$.
+
 
* Given a receive sequence&nbsp; $\underline{y}$&nbsp; the Viterbi algorithm decides on the code sequence&nbsp; $\underline{z}$&nbsp; according to  
+
*It is valid&nbsp; $u_i &#8712; \{0, \, 1\}$.&nbsp; In contrast,&nbsp; the code symbols are represented bipolar &nbsp; &#8658; &nbsp; $x_i &#8712; \{&ndash;1, \, +1\}$.
 +
 
 +
* Let the channel be given by the models&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Channel_.E2.80. 93_BSC|$\text{BSC}$]]&nbsp; &nbsp; &#8658; &nbsp; received values&nbsp; $y_i &#8712; \{&ndash;1, \, +1\}$&nbsp; or&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#AWGN_channel_at_Binary_Input| $\text{AWGN}$]] &nbsp; &#8658; $y_i$&nbsp; real-valued.
 +
 
 +
* Given a received sequence&nbsp; $\underline{y}$&nbsp; the Viterbi algorithm decides for the sequence&nbsp; $\underline{z}$&nbsp; according to  
 
:$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} |\hspace{0.05cm} \underline{y} ) \hspace{0.05cm}.$$
 
:$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} |\hspace{0.05cm} \underline{y} ) \hspace{0.05cm}.$$
  
*This corresponds to the&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Criteria_.C2.BBMaximum-a-posteriori.C2.AB_and_.C2.BBMaximum-Likelihood.C2.AB| "Maximum a posteriori"]]&nbsp; (MAP) criterion. If all information sequences&nbsp; $\underline{u}$&nbsp; are equally likely, this transitions to the somewhat simpler&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Criteria_.C2.BBMaximum-a-posteriori.C2.AB_and_.C2.BBMaximum-Likelihood.C2.AB| "Maximum likelihood criterion"]]&nbsp;:  
+
*This corresponds to the&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Criteria_.C2.BBMaximum-a-posteriori.C2.AB_and_.C2.BBMaximum-Likelihood.C2.AB| "Maximum a posteriori"]]&nbsp; $\rm (MAP)$&nbsp; criterion.&nbsp; If all information sequences&nbsp; $\underline{u}$&nbsp; are equally likely,&nbsp; this transitions to the somewhat simpler&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Criteria_.C2.BBMaximum-a-posteriori.C2.AB_and_.C2.BBMaximum-Likelihood.C2.AB| "Maximum likelihood criterion"]]&nbsp; $\rm (ML)$:  
 
:$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{y}  \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \hspace{0.05cm}.$$
 
:$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{y}  \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \hspace{0.05cm}.$$
  
*As a further result, the Viterbi&ndash;algorithm additionally outputs the sequence&nbsp; $\underline{v}$&nbsp; as an estimate for the information sequence&nbsp; $\underline{u}$&nbsp;.
+
*As a further result,&nbsp; the Viterbi algorithm additionally outputs the sequence&nbsp; $\underline{v}$&nbsp; as an estimate for the information sequence&nbsp; $\underline{u}$.
  
  
In this exercise, the relationship between the&nbsp; [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding| "Hamming&ndash;Distance"]]&nbsp; $d_{\rm H}(\underline{x}, \, \underline{y})$&nbsp; and the&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Maximum-likelihood_decision_at_the_AWGN_channel| "Euclidean distance"]]
+
In this exercise,&nbsp; you should determinethe relationship between the&nbsp; [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding| $\text{Hamming distance}$]]&nbsp; $d_{\rm H}(\underline{x}, \, \underline{y})$&nbsp; and the&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Maximum-likelihood_decision_at_the_AWGN_channel|$\text{Euclidean distance}$]]
 
:$$d_{\rm E}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) =
 
:$$d_{\rm E}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) =
\sqrt{\sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2}\hspace{0.05cm}$$
+
\sqrt{\sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2}\hspace{0.05cm}.$$
  
are determined. Then, the above ML criterion is to be formulated with
+
Then,&nbsp; the above maximum likelihood criterion is to be formulated with
 
* the Hamming distance&nbsp; $d_{\rm H}(\underline{x}, \, \underline{y})$,
 
* the Hamming distance&nbsp; $d_{\rm H}(\underline{x}, \, \underline{y})$,
* the Euclidean distance&nbsp; $d_{\rm E}(\underline{x}, \, \underline{y})$, and
+
 
* the&nbsp; [[Channel_Coding/Decoding_of_Convolutional_Codes#Relationship_between_Hamming_distance_and_correlation| "correlation value"]]&nbsp; $&#9001; x \cdot y &#9002;$.
+
* the Euclidean distance&nbsp; $d_{\rm E}(\underline{x}, \, \underline{y})$,&nbsp; and
 +
 
 +
* the&nbsp; [[Channel_Coding/Decoding_of_Convolutional_Codes#Relationship_between_Hamming_distance_and_correlation|$\text{correlation value}$]]&nbsp; $&#9001; x \cdot y &#9002;$.
 +
 
  
  
Line 29: Line 36:
  
  
 +
<u>Hints:</u>
 +
* This exercise refers to the chapter&nbsp; [[Channel_Coding/Decoding_of_Convolutional_Codes| "Decoding of Convolutional Codes"]].
 +
 +
* Reference is made in particular to the section&nbsp; [[Channel_Coding/Decoding_of_Convolutional_Codes#Viterbi_algorithm_based_on_correlation_and_metrics|"Viterbi algorithm &ndash; based on correlation and metrics"]].
  
Hints:
+
* For simplicity,&nbsp; "tilde"&nbsp; and&nbsp; "apostrophe"&nbsp; are omitted.
* This exercise refers to the chapter&nbsp; [[Channel_Coding/Decoding_of_Convolutional_Codes| "Decoding of Convolutional Codes"]].
+
 
* Reference is made in particular to the page&nbsp; [[Channel_Coding/Decoding_of_Convolutional_Codes#Viterbi_algorithm_based_on_correlation_and_metrics|"Viterbi algorithm &ndash; based on correlation and metrics"]].
+
* For more information on this topic,&nbsp; see the following sections in this book:
* For simplicity, "tilde" and "apostrophe" are omitted.
 
* For more information on this topic, see the following pages in this book:
 
 
** [[Channel_Coding/Channel_Models_and_Decision_Structures#Criteria_.C2.BBMaximum-a-posteriori.C2.AB_and_.C2.BBMaximum-Likelihood.C2.AB| "MAP and ML criterion"]],
 
** [[Channel_Coding/Channel_Models_and_Decision_Structures#Criteria_.C2.BBMaximum-a-posteriori.C2.AB_and_.C2.BBMaximum-Likelihood.C2.AB| "MAP and ML criterion"]],
 +
 
** [[Channel_Coding/Channel_Models_and_Decision_Structures#Maximum-likelihood_decision_at_the_BSC_channel| "ML decision at the BSC channel"]],
 
** [[Channel_Coding/Channel_Models_and_Decision_Structures#Maximum-likelihood_decision_at_the_BSC_channel| "ML decision at the BSC channel"]],
 +
 
** [[Channel_Coding/Channel_Models_and_Decision_Structures#Maximum-likelihood_decision_at_the_AWGN_channel| "ML decision at the AWGN channel"]],
 
** [[Channel_Coding/Channel_Models_and_Decision_Structures#Maximum-likelihood_decision_at_the_AWGN_channel| "ML decision at the AWGN channel"]],
 +
 
** [[Channel_Coding/Decoding_of_Linear_Block_Codes#Block_diagram_and_requirements| "Decoding linear block codes"]].
 
** [[Channel_Coding/Decoding_of_Linear_Block_Codes#Block_diagram_and_requirements| "Decoding linear block codes"]].
  
Line 44: Line 56:
 
===Questions===
 
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{How are&nbsp; $d_{\rm H}(\underline{x}, \, \underline{y})$&nbsp; and&nbsp; $d_{\rm E}(\underline{x}, \, \underline{y})$&nbsp; related in the BSC&ndash;model?
+
{How are &nbsp; $d_{\rm H}(\underline{x}, \, \underline{y})$ &nbsp; and &nbsp; $d_{\rm E}(\underline{x}, \, \underline{y})$ &nbsp; related in the BSC model?
 
|type="()"}
 
|type="()"}
 
- &nbsp; $d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}(\underline{x}, \, \underline{y})$ is valid.
 
- &nbsp; $d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}(\underline{x}, \, \underline{y})$ is valid.
Line 50: Line 62:
 
+ &nbsp; $d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}^2(\underline{x}, \, \underline{y})/4$ is valid.
 
+ &nbsp; $d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}^2(\underline{x}, \, \underline{y})/4$ is valid.
  
{Which of the equations describe the ML decoding in the BSC model? The minimization/maximization refers to all&nbsp; $\underline{x} &#8712;\mathcal{ C}$, respectively.
+
{Which of the equations describe the maximum likelihood decoding in the BSC model?&nbsp; The minimization/maximization refers alwaysto all&nbsp; $\underline{x} &#8712;\mathcal{ C}$.
 
|type="[]"}
 
|type="[]"}
 
+ $\underline{z} = \arg \min {d_{\rm H}(\underline{x}, \, \underline{y})}$,
 
+ $\underline{z} = \arg \min {d_{\rm H}(\underline{x}, \, \underline{y})}$,
Line 56: Line 68:
 
+ $\underline{z} = \arg \min {d_{\rm E}^2(\underline{x}, \, \underline{y})}$,
 
+ $\underline{z} = \arg \min {d_{\rm E}^2(\underline{x}, \, \underline{y})}$,
  
{Which equation describes the ML decision in the BSC model?
+
{Which equation describes the maximum likelihood decision in the BSC model?
 
|type="()"}
 
|type="()"}
 
- $\underline{z} = \arg \min &#9001; \underline{x} \cdot \underline{y} &#9002;$,
 
- $\underline{z} = \arg \min &#9001; \underline{x} \cdot \underline{y} &#9002;$,
 
+ $\underline{z} = \arg \max &#9001; \underline{x} \cdot \underline{y} &#9002;$.
 
+ $\underline{z} = \arg \max &#9001; \underline{x} \cdot \underline{y} &#9002;$.
  
{What equations apply to the ML decision in the AWGN model?
+
{What equations apply to the maximum likelihood decision in the AWGN model?
 
|type="[]"}
 
|type="[]"}
 
- $\underline{z} = \arg \min {d_{\rm H}(\underline{x}, \, \underline{y})}$,
 
- $\underline{z} = \arg \min {d_{\rm H}(\underline{x}, \, \underline{y})}$,

Revision as of 16:50, 18 November 2022

Overall system model,  given for this exercise

The Viterbi algorithm represents the best known realization form for the maximum likelihood decoding of a convolutional code.  We assume here the following model:

  • The information sequence  $\underline{u}$  is converted into the code sequence  $\underline{x}$  by a convolutional code.
  • It is valid  $u_i ∈ \{0, \, 1\}$.  In contrast,  the code symbols are represented bipolar   ⇒   $x_i ∈ \{–1, \, +1\}$.
  • Let the channel be given by the models  $\text{BSC}$    ⇒   received values  $y_i ∈ \{–1, \, +1\}$  or  $\text{AWGN}$   ⇒ $y_i$  real-valued.
  • Given a received sequence  $\underline{y}$  the Viterbi algorithm decides for the sequence  $\underline{z}$  according to
$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} |\hspace{0.05cm} \underline{y} ) \hspace{0.05cm}.$$
$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \hspace{0.05cm}.$$
  • As a further result,  the Viterbi algorithm additionally outputs the sequence  $\underline{v}$  as an estimate for the information sequence  $\underline{u}$.


In this exercise,  you should determinethe relationship between the  $\text{Hamming distance}$  $d_{\rm H}(\underline{x}, \, \underline{y})$  and the  $\text{Euclidean distance}$

$$d_{\rm E}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \sqrt{\sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2}\hspace{0.05cm}.$$

Then,  the above maximum likelihood criterion is to be formulated with

  • the Hamming distance  $d_{\rm H}(\underline{x}, \, \underline{y})$,
  • the Euclidean distance  $d_{\rm E}(\underline{x}, \, \underline{y})$,  and





Hints:

  • For simplicity,  "tilde"  and  "apostrophe"  are omitted.


Questions

1

How are   $d_{\rm H}(\underline{x}, \, \underline{y})$   and   $d_{\rm E}(\underline{x}, \, \underline{y})$   related in the BSC model?

  $d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}(\underline{x}, \, \underline{y})$ is valid.
  $d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}^2(\underline{x}, \, \underline{y})$ is valid.
  $d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}^2(\underline{x}, \, \underline{y})/4$ is valid.

2

Which of the equations describe the maximum likelihood decoding in the BSC model?  The minimization/maximization refers alwaysto all  $\underline{x} ∈\mathcal{ C}$.

$\underline{z} = \arg \min {d_{\rm H}(\underline{x}, \, \underline{y})}$,
$\underline{z} = \arg \min {d_{\rm E}(\underline{x}, \, \underline{y})}$,
$\underline{z} = \arg \min {d_{\rm E}^2(\underline{x}, \, \underline{y})}$,

3

Which equation describes the maximum likelihood decision in the BSC model?

$\underline{z} = \arg \min 〈 \underline{x} \cdot \underline{y} 〉$,
$\underline{z} = \arg \max 〈 \underline{x} \cdot \underline{y} 〉$.

4

What equations apply to the maximum likelihood decision in the AWGN model?

$\underline{z} = \arg \min {d_{\rm H}(\underline{x}, \, \underline{y})}$,
$\underline{z} = \arg \min {d_{\rm E}(\underline{x}, \, \underline{y})}$,
$\underline{z} = \arg \max 〈 \underline{x} \cdot \underline{y} 〉$.


Solution

(1)  Correct is the proposed solution 3:

  • Let the two binary sequences be $\underline{x}$ and $\underline{y}$ with $x_i ∈ \{-1, \, +1\}, \ y_i ∈ \{-1, \, +1\}$. Let the sequence length be $L$ in each case.
  • The Hamming distance $d_{\rm H}(\underline{x}, \, \underline{y})$ gives the number of bits in which $\underline{x}$ and $\underline{y}$ differ, for which thus $x_i \, - y_i = ±2$   ⇒   $ (x_i \, - y_i)^2 = 4$ holds.
  • Equal symbols $(x_i = y_i)$ do not contribute to the Hamming–distance and give $(x_i \, – y_i)^2 = 0$. According to the solution 3, we can therefore write:
$$ d_{\rm H}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \frac{1}{4} \cdot \sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2= \frac{1}{4} \cdot d_{\rm E}^2(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y})\hspace{0.05cm}.$$


(2)  All proposed solutions are correct:

  • In the BSC model, it is common practice to select the code word $\underline{x}$ with the smallest Hamming distance $d_{\rm H}(\underline{x}, \, \underline{y})$ for the given received vector $\underline{y}$:
$$\underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm H}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y})\hspace{0.05cm}.$$
  • But according to the subtask (1) also applies:
$$\underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y})/4 \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm E}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) \hspace{0.05cm}.$$
  • The factor $1/4$ does not matter for the minimization. Since $d_{\rm E}(\underline{x}, \, \underline{y}) ≥ 0$, it does not matter whether the minimization is done with respect to $d_{\rm E}(\underline{x}, \, \underline{y})$ or $d_{\rm E}^2(\underline{x}, \, \underline{y})$.


(3)  Correct is the proposed solution 2:

  • The square of the Euclidean distance can be expressed as follows:
$$d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2 = \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2} \hspace{0.1cm}-2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot y_i \hspace{0.05cm}.$$
  • The first two summands are each equal to $L$ and need not be considered for minimization.
  • For the last expression in this equation, $–2 \cdot 〈 \underline{x}, \, \underline{y} 〉$ can be written.
  • Due to the negative sign, minimization becomes maximization   ⇒   answer 2.


(4)  Correct are proposed solutions 2 and 3:

  • For the AWGN channel, unlike the BSC, no Hamming distance can be specified.
  • Based on the equation
$$d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2} \hspace{0.1cm}-2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot y_i$$
the same statements apply for the first and last summands as for the BSC model – see subtask (3).
  • For the middle summand, $y_i = x_i + n_i$ and $x_i ∈ \{–1, \, +1\}$ hold:
$$\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2} = \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} n_i^{\hspace{0.15cm}2} \hspace{0.1cm}+2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot n_i \hspace{0.05cm}.$$
  • The first summand again gives $L$, the second is proportional to the noise power, and the last term vanishes since $\underline{x}$ and $\underline{n}$ are uncorrelated.
  • So for minimizing $d_{\rm E}(\underline{x}, \, \underline{y})$, the sum over $y_i^2$ need not be considered since there is no relation to the code sequences $\underline{x}$.