Difference between revisions of "Aufgaben:Exercise 3.11Z: Metric and Accumutated Metric"

From LNTwww
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Viterbi–Empfänger}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Viterbi_Receiver}}
  
[[File:P_ID1476__Dig_Z_3_11.png|right|frame|Berechnung der minimalen Gesamtfehlergrößen]]
+
[[File:P_ID1476__Dig_Z_3_11.png|right|frame|Calculation of the minimum total error quantities]]
Für die in der  [[Aufgaben:3.11_Viterbi-Empf%C3%A4nger_und_Trellisdiagramm|Aufgabe 3.11]]  behandelte Maximum–Likelihood–Konstellation mit bipolaren Amplitudenkoeffizient  $a_{\rm \nu} ∈ \{+1, –1\}$  sollen die Fehlergrößen  $\varepsilon_{\rm \nu}(i)$  sowie  die minimalen Gesamtfehlergrößen  ${\it \Gamma}_{\rm \nu}(–1)$ und ${\it \Gamma}_{\rm \nu}(+1)$  ermittelt werden.
+
For the maximum likelihood constellation with bipolar amplitude coefficient   $a_{\rm \nu} ∈ \{+1, –1\}$  discussed in   [[Aufgaben:Exercise_3.11:_Viterbi_Receiver_and_Trellis_Diagram|"Exercise 3.11"]],  behandelte Maximum–Likelihood–Konstellation mit bipolaren Amplitudenkoeffizient  $a_{\rm \nu} ∈ \{+1, –1\}$  the error quantities   $\varepsilon_{\rm \nu}(i)$  and the minimum total error quantities   ${\it \Gamma}_{\rm \nu}(–1)$ and ${\it \Gamma}_{\rm \nu}(+1)$  are to be determined.
  
Der Grundimpuls ist durch die beiden Werte  $g_0$  und  $g_{\rm –1}$  gegeben. Diese können ebenso wie die Detektionsabtastwerte  $d_0$  und  $d_1$  aus den nachfolgenden Berechnungen für die Fehlergrößen  $\varepsilon_{\rm \nu}(i)$  zu den Zeitpunkten  $\nu = 0$  und  $\nu = 1$  entnommen werden. Anzumerken ist, dass vor der eigentlichen Nachricht  $(a_1$, $a_2$, $a_3)$  stets das Symbol  $a_0 = 0$  gesendet wird.
+
The basic pulse is given by the two values   $g_0$  and  $g_{\rm –1}$.  These, as well as the detection samples   $d_0$  and  $d_1$,  can be taken from the following calculations for the error quantities   $\varepsilon_{\rm \nu}(i)$  at the times   $\nu = 0$  and  $\nu = 1$.  Note that the symbol  $a_0 = 0$  is always sent before the actual message   $(a_1$, $a_2$, $a_3)$.   
  
Für den Zeitpunkt  $\nu = 0$  gilt:
+
For the time  $\nu = 0$  holds:
 
:$$\varepsilon_{0}(+1) \ = \ \big[-0.4- 0.4\big]^2=0.64 \hspace{0.05cm},$$
 
:$$\varepsilon_{0}(+1) \ = \ \big[-0.4- 0.4\big]^2=0.64 \hspace{0.05cm},$$
 
:$$\varepsilon_{0}(-1) \ = \ \big[-0.4+ 0.4\big]^2=0.00 \hspace{0.05cm}.$$
 
:$$\varepsilon_{0}(-1) \ = \ \big[-0.4+ 0.4\big]^2=0.00 \hspace{0.05cm}.$$
  
Daraus könnte bereits zum Zeitpunkt  $\nu = 0$  geschlossen werden, dass mit großer Wahrscheinlichkeit  $a_1 =  -\hspace{-0.05cm}1$  ist.
+
From this it could be concluded already at time   $\nu = 0$  that with high probability   $a_1 =  -\hspace{-0.05cm}1$.   
  
Für den Zeitpunkt  $\nu = 1$  ergeben sich folgende Fehlergrößen:
+
For time   $\nu = 1$,  the following error quantities result:
 
:$$\varepsilon_{1}(+1, +1) \ = \ \big[-0.8- 0.6 -0.4\big]^2=3.24
 
:$$\varepsilon_{1}(+1, +1) \ = \ \big[-0.8- 0.6 -0.4\big]^2=3.24
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
Line 23: Line 23:
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Die minimalen Gesamtfehlergrößen  ${\it \Gamma}_{\rm \nu}(-\hspace{-0.07cm}1)$  und  ${\it \Gamma}_{\rm \nu}(+1)$, die mit diesen sechs Fehlergrößen berechnet werden können, sind bereits in der Grafik eingezeichnet. Die weiteren Detektionsabtastwerte sind  $d_{2}=0.1 \hspace{0.05cm},\hspace{0.1cm}
+
The minimum total error quantities   ${\it \Gamma}_{\rm \nu}(-\hspace{-0.07cm}1)$  and  ${\it \Gamma}_{\rm \nu}(+1)$ that can be calculated with these six error quantities are already plotted in the graph. The other detection samples are   $d_{2}=0.1 \hspace{0.05cm},\hspace{0.1cm}
 
d_{3}=0.5  \hspace{0.05cm}.$
 
d_{3}=0.5  \hspace{0.05cm}.$
  
Line 30: Line 30:
  
  
''Hinweise:''  
+
''Notes:''  
*Die Aufgabe gehört zum  Kapitel   [[Digitalsignal%C3%BCbertragung/Viterbi%E2%80%93Empf%C3%A4nger|Viterbi–Empfänger]].
+
*The exercise belongs to the chapter    [[Digital_Signal_Transmission/Viterbi_Receiver|"Viterbi Receiver"]].
 
   
 
   
* Alle Größen sind hier normiert zu verstehen.  
+
* All quantities are to be understood normalized here.
*Gehen Sie zudem von bipolaren und gleichwahrscheinlichen Amplitudenkoeffizienten aus:  ${\rm Pr} (a_\nu = -\hspace{-0.05cm}1) = {\rm Pr} (a_\nu = +1)= 0.5.$
+
*Also assume bipolar and equal probability amplitude coefficients:   ${\rm Pr} (a_\nu = -\hspace{-0.05cm}1) = {\rm Pr} (a_\nu = +1)= 0.5.$
* Die Thematik wird auch im interaktiven Applet  [[Applets:Viterbi|Eigenschaften des Viterbi–Empfängers]] behandelt.
+
* The topic is also covered in the interactive applet   [[Applets:Viterbi|"Properties of the Viterbi Receiver"]].  
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Von welchen Detektionsabtastwerten&nbsp; $d_0$&nbsp; und&nbsp; $d_1$&nbsp; wurde hier ausgegangen?
+
{What detection samples &nbsp; $d_0$&nbsp; and&nbsp; $d_1$&nbsp; were assumed here?
 
|type="{}"}
 
|type="{}"}
 
$d_0 \ = \ $ { -0.412--0.388 }
 
$d_0 \ = \ $ { -0.412--0.388 }
 
$d_1\ = \ $ { -0.824--0.776 }
 
$d_1\ = \ $ { -0.824--0.776 }
  
{Welche Grundimpulswerte wurden dabei vorausgesetzt?
+
{Which basic pulse values were assumed here?
 
|type="{}"}
 
|type="{}"}
 
$g_0\ = \ $ { 0.6 3% }
 
$g_0\ = \ $ { 0.6 3% }
 
$g_{-1} \ = \ $ { 0.4 3% }
 
$g_{-1} \ = \ $ { 0.4 3% }
  
{Welche der aufgeführten Detektionsabtastwerte sind für&nbsp; $\nu &#8805; 1$&nbsp; möglich?
+
{Which of the listed detection samples are possible for &nbsp; $\nu &#8805; 1$?&nbsp;  
 
|type="[]"}
 
|type="[]"}
 
+ $&plusmn;0.2,$
 
+ $&plusmn;0.2,$
Line 58: Line 58:
 
+ $&plusmn;1.0.$
 
+ $&plusmn;1.0.$
  
{Geben Sie die minimalen Gesamtfehlergrößen für die Zeit&nbsp; $\nu = 2$&nbsp; an &nbsp;$(d_2 = 0.1)$.
+
{Give the minimum total error quantities for time &nbsp; $\nu = 2$&nbsp; &nbsp;$(d_2 = 0.1)$.
 
|type="{}"}
 
|type="{}"}
 
${\it \Gamma}_2(+1)\ = \ $ { 0.13 3% }
 
${\it \Gamma}_2(+1)\ = \ $ { 0.13 3% }
 
${\it \Gamma}_2(-\hspace{-0.05cm}1)\ = \ $ { 0.37 3% }
 
${\it \Gamma}_2(-\hspace{-0.05cm}1)\ = \ $ { 0.37 3% }
  
{Berechnen Sie die minimalen Gesamtfehlergrößen für die Zeit&nbsp; $\nu = 3$&nbsp; $(d_3 = 0.5)$.
+
{Calculate the minimum total error quantities for time &nbsp; $\nu = 3$&nbsp; $(d_3 = 0.5)$.
 
|type="{}"}
 
|type="{}"}
 
${\it \Gamma}_3(+1) \ = \ $ { 0.38 3% }
 
${\it \Gamma}_3(+1) \ = \ $ { 0.38 3% }
Line 69: Line 69:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Aus den Gleichungen auf der Angabenseite erkennt man $d_0 = \underline{&ndash;0.4}$ und $d_1 = \underline {&ndash;0.8}$.
+
'''(1)'''&nbsp; From the equations on the information section one can see $d_0 = \underline{&ndash;0.4}$ and $d_1 = \underline {&ndash;0.8}$.
  
  
'''(2)'''&nbsp; Die Fehlergrößen $\varepsilon_0(i)$ beinhalten den Grundimpulswert $g_{\rm &ndash;1}$, über den der Zusammenhang zwischen dem Amplitudenkoeffizienten $a_1$ und dem Detektionsabtastwert $d_0$ hergestellt wird ($g_0$ ist in diesen Gleichungen nicht enthalten).  
+
'''(2)'''&nbsp; The error quantities $\varepsilon_0(i)$ include the basic pulse value $g_{\rm &ndash;1}$, which is used to establish the relationship between the amplitude coefficient $a_1$ and the detection sample $d_0$ ($g_0$ is not included in these equations).  
*Man erkennt $g_{\rm &ndash;1}\  \underline {= 0.4}$.  
+
*One can see $g_{\rm &ndash;1}\  \underline {= 0.4}$.  
*Aus den Gleichungen für $\nu = 1$ ist der Hauptwert $g_0 \ \underline {= 0.6}$ ablesbar.  
+
*From the equations for $\nu = 1$, the main value $g_0 \ \underline {= 0.6}$ can be read.
  
  
  
'''(3)'''&nbsp; Richtig sind die Lösungsvorschläge <u>1 und 4</u>:
+
'''(3)'''&nbsp; The correct solutions are <u>1 and 4</u>:
*Die möglichen Nutzabtastwerte sind $\pm g_0 \pm g_{\rm &ndash;1} = \pm 0.6 \pm0.4$, also $\underline {&plusmn;0.2}$ und $\underline {&plusmn;1.0}$.  
+
*The possible useful samples are $\pm g_0 \pm g_{\rm &ndash;1} = \pm 0.6 \pm0.4$, i.e. $\underline {&plusmn;0.2}$ and $\underline {&plusmn;1.0}$.  
*Bei unipolarer Signalisierung &nbsp; &rArr; &nbsp; $a_\nu \in \{0, \hspace{0.05cm} 1\}$ würden sich dagegen die Werte $0, \ 0.4, \ 0.6$ und $1$ ergeben.  
+
*In contrast, unipolar signaling &nbsp; &rArr; &nbsp; $a_\nu \in \{0, \hspace{0.05cm} 1\}$ would result in values of $0, \ 0.4, \ 0.6$ and $1$.  
*Der Zusammenhang zwischen bipolaren Werten $b_i$ und den unipolaren Äquivalenten $u_i$ lautet allgemein: &nbsp; $b_i = 2 \cdot u_i - 1  \hspace{0.05cm}.$
+
*The relationship between bipolar values $b_i$ and unipolar equivalents $u_i$ is generally: &nbsp; $b_i = 2 \cdot u_i - 1  \hspace{0.05cm}.$
  
  
  
'''(4)'''&nbsp; Die Fehlergrößen ergeben sich für $\nu = 2$ unter Berücksichtigung des Ergebnisses aus (3) wie folgt:
+
'''(4)'''&nbsp; The error quantities are obtained for $\nu = 2$ considering the result from (3) as follows:
 
:$$\varepsilon_{2}(+1, +1)  \ = \ [0.1 - 1.0]^2=0.81,\hspace{0.2cm}
 
:$$\varepsilon_{2}(+1, +1)  \ = \ [0.1 - 1.0]^2=0.81,\hspace{0.2cm}
 
   \varepsilon_{2}(-1, +1)  = [0.1 +0.2]^2=0.09
 
   \varepsilon_{2}(-1, +1)  = [0.1 +0.2]^2=0.09
Line 95: Line 95:
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Damit lauten die minimalen Gesamtfehlergrößen:
+
Thus, the minimum total error quantities are:
 
:$${\it \Gamma}_{2}(+1) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(+1) + \varepsilon_{2}(+1, +1),
 
:$${\it \Gamma}_{2}(+1) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(+1) + \varepsilon_{2}(+1, +1),
 
  \hspace{0.2cm}{\it \Gamma}_{1}(-1) + \varepsilon_{2}(-1, +1)\right] =
 
  \hspace{0.2cm}{\it \Gamma}_{1}(-1) + \varepsilon_{2}(-1, +1)\right] =
Line 104: Line 104:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
[[File:P_ID1480__Dig_Z_3_11d.png|right|frame|Berechnung der minimalen Gesamtfehlergrößen]]
+
[[File:P_ID1480__Dig_Z_3_11d.png|right|frame|Calculation of the minimum total error quantities]]
<br>Im nebenstehenden Trellisdiagramm ist der Zustand "$1$" als "$+1$" und "$0$" als "$&ndash;1$" zu interpretieren.  
+
<br>In the adjacent trellis diagram, the state "$1$" is to be interpreted as "$+1$" and "$0$" as "$&ndash;1$".
  
Dann gilt:
+
Then holds:
*${\it \Gamma}_2(+1) = 0.13$ ist die minimale Gesamtfehlergröße unter der Hypothese, dass das nachfolgende Symbol $a_3 = +1$ sein wird.  
+
*${\it \Gamma}_2(+1) = 0.13$ is the minimum total error quantity under the hypothesis that the following symbol will be $a_3 = +1$.
*Unter dieser Annahme ist $a_2 = \ &ndash;1$ wahrscheinlicher als $a_2 = +1$, wie aus dem Trellisdiagramm hervorgeht (der ankommende Pfad ist blau).
+
*Under this assumption, $a_2 = \ &ndash;1$ is more likely than $a_2 = +1$, as shown in the trellis diagram (the incoming path is blue).
*Eine realistische Alternative zur Kombination "$a_2 = \ &ndash;1, a_3 = +1$" ist "$a_2 = +1, a_3 = \ &ndash;1$", die zur minimalen Gesamtfehlergröße ${\it \Gamma}_2(&ndash;1) = 0.37$ führen. Hier ist der ankommende Pfad rot.
+
*A realistic alternative to the combination "$a_2 = \ &ndash;1, a_3 = +1$" is "$a_2 = +1, a_3 = \ &ndash;1$", which lead to the minimum total error quantity ${\it \Gamma}_2(&ndash;1) = 0.37$. Here, the incoming path is red.
  
  
'''(5)'''&nbsp; Für den Zeitpunkt $\nu = 3$ gelten folgende Gleichungen:
+
'''(5)'''&nbsp; For time $\nu = 3$, the following equations hold:
 
:$$\varepsilon_{3}(+1, +1)  \ = \ [0.5 - 1.0]^2=0.25,\hspace{0.2cm}
 
:$$\varepsilon_{3}(+1, +1)  \ = \ [0.5 - 1.0]^2=0.25,\hspace{0.2cm}
 
   \varepsilon_{3}(-1, +1)  = [0.5 +0.2]^2=0.49
 
   \varepsilon_{3}(-1, +1)  = [0.5 +0.2]^2=0.49
Line 125: Line 125:
 
  0.22}  \hspace{0.05cm}.$$
 
  0.22}  \hspace{0.05cm}.$$
  
*Bei beiden Gleichungen ist der jeweils erste Term der kleinere, wobei jeweils ${\it \Gamma}_2(+1) = 0.13$ enthalten ist.  
+
*In both equations, the first term in each case is the smaller, with ${\it \Gamma}_2(+1) = 0.13$ included in each case.
*Deshalb wird der Viterbi&ndash;Empfänger mit Sicherheit $a_3 = +1$ ausgeben, ganz egal, welche Informationen er zu späteren Zeitpunkten ($\nu > 3$) noch bekommen wird.
+
*Therefore, the Viterbi receiver will certainly output $a_3 = +1$, no matter what information it will still get at later times ($\nu > 3$).
  
  
Verfolgt man den durchgehenden Pfad im Trellisdiagramm, so sind durch die Festlegung $a_3 = +1$ auch die anderen Amplitudenkoeffizienten fix:
+
If we follow the continuous path in the trellis diagram, the other amplitude coefficients are also fixed by fixing $a_3 = +1$:
 
:$$a_1 = a_2 = \ &ndash;1.$$
 
:$$a_1 = a_2 = \ &ndash;1.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 11:22, 8 June 2022

Calculation of the minimum total error quantities

For the maximum likelihood constellation with bipolar amplitude coefficient   $a_{\rm \nu} ∈ \{+1, –1\}$  discussed in   "Exercise 3.11",  behandelte Maximum–Likelihood–Konstellation mit bipolaren Amplitudenkoeffizient  $a_{\rm \nu} ∈ \{+1, –1\}$  the error quantities   $\varepsilon_{\rm \nu}(i)$  and the minimum total error quantities   ${\it \Gamma}_{\rm \nu}(–1)$ and ${\it \Gamma}_{\rm \nu}(+1)$  are to be determined.

The basic pulse is given by the two values   $g_0$  and  $g_{\rm –1}$.  These, as well as the detection samples   $d_0$  and  $d_1$,  can be taken from the following calculations for the error quantities   $\varepsilon_{\rm \nu}(i)$  at the times   $\nu = 0$  and  $\nu = 1$.  Note that the symbol  $a_0 = 0$  is always sent before the actual message   $(a_1$, $a_2$, $a_3)$. 

For the time  $\nu = 0$  holds:

$$\varepsilon_{0}(+1) \ = \ \big[-0.4- 0.4\big]^2=0.64 \hspace{0.05cm},$$
$$\varepsilon_{0}(-1) \ = \ \big[-0.4+ 0.4\big]^2=0.00 \hspace{0.05cm}.$$

From this it could be concluded already at time   $\nu = 0$  that with high probability   $a_1 = -\hspace{-0.05cm}1$. 

For time   $\nu = 1$,  the following error quantities result:

$$\varepsilon_{1}(+1, +1) \ = \ \big[-0.8- 0.6 -0.4\big]^2=3.24 \hspace{0.05cm},$$
$$\varepsilon_{1}(+1, -1) \ = \ \big[-0.8- 0.6 +0.4\big]^2=1.00 \hspace{0.05cm},$$
$$\varepsilon_{1}(-1, +1) \ = \ \big[-0.8+ 0.6 -0.4\big]^2=0.36 \hspace{0.05cm},$$
$$ \varepsilon_{1}(-1, -1) \ = \ \big[-0.8+ 0.6 +0.4\big]^2=0.04 \hspace{0.05cm}.$$

The minimum total error quantities   ${\it \Gamma}_{\rm \nu}(-\hspace{-0.07cm}1)$  and  ${\it \Gamma}_{\rm \nu}(+1)$ that can be calculated with these six error quantities are already plotted in the graph. The other detection samples are   $d_{2}=0.1 \hspace{0.05cm},\hspace{0.1cm} d_{3}=0.5 \hspace{0.05cm}.$



Notes:

  • All quantities are to be understood normalized here.
  • Also assume bipolar and equal probability amplitude coefficients:   ${\rm Pr} (a_\nu = -\hspace{-0.05cm}1) = {\rm Pr} (a_\nu = +1)= 0.5.$
  • The topic is also covered in the interactive applet   "Properties of the Viterbi Receiver".


Questions

1

What detection samples   $d_0$  and  $d_1$  were assumed here?

$d_0 \ = \ $

$d_1\ = \ $

2

Which basic pulse values were assumed here?

$g_0\ = \ $

$g_{-1} \ = \ $

3

Which of the listed detection samples are possible for   $\nu ≥ 1$? 

$±0.2,$
$±0.4,$
$±0.6,$
$±1.0.$

4

Give the minimum total error quantities for time   $\nu = 2$   $(d_2 = 0.1)$.

${\it \Gamma}_2(+1)\ = \ $

${\it \Gamma}_2(-\hspace{-0.05cm}1)\ = \ $

5

Calculate the minimum total error quantities for time   $\nu = 3$  $(d_3 = 0.5)$.

${\it \Gamma}_3(+1) \ = \ $

${\it \Gamma}_3(-\hspace{-0.05cm}1) \ = \ $


Solution

(1)  From the equations on the information section one can see $d_0 = \underline{–0.4}$ and $d_1 = \underline {–0.8}$.


(2)  The error quantities $\varepsilon_0(i)$ include the basic pulse value $g_{\rm –1}$, which is used to establish the relationship between the amplitude coefficient $a_1$ and the detection sample $d_0$ ($g_0$ is not included in these equations).

  • One can see $g_{\rm –1}\ \underline {= 0.4}$.
  • From the equations for $\nu = 1$, the main value $g_0 \ \underline {= 0.6}$ can be read.


(3)  The correct solutions are 1 and 4:

  • The possible useful samples are $\pm g_0 \pm g_{\rm –1} = \pm 0.6 \pm0.4$, i.e. $\underline {±0.2}$ and $\underline {±1.0}$.
  • In contrast, unipolar signaling   ⇒   $a_\nu \in \{0, \hspace{0.05cm} 1\}$ would result in values of $0, \ 0.4, \ 0.6$ and $1$.
  • The relationship between bipolar values $b_i$ and unipolar equivalents $u_i$ is generally:   $b_i = 2 \cdot u_i - 1 \hspace{0.05cm}.$


(4)  The error quantities are obtained for $\nu = 2$ considering the result from (3) as follows:

$$\varepsilon_{2}(+1, +1) \ = \ [0.1 - 1.0]^2=0.81,\hspace{0.2cm} \varepsilon_{2}(-1, +1) = [0.1 +0.2]^2=0.09 \hspace{0.05cm},$$
$$\varepsilon_{2}(+1, -1) \ = \ [0.1 -0.2]^2=0.01,\hspace{0.2cm} \varepsilon_{2}(-1, -1) = [0.1 +1.0]^2=1.21 \hspace{0.05cm}.$$

Thus, the minimum total error quantities are:

$${\it \Gamma}_{2}(+1) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(+1) + \varepsilon_{2}(+1, +1), \hspace{0.2cm}{\it \Gamma}_{1}(-1) + \varepsilon_{2}(-1, +1)\right] = {\rm Min}\left[0.36 + 0.81, 0.04 + 0.09\right]\hspace{0.15cm}\underline {= 0.13} \hspace{0.05cm},$$
$${\it \Gamma}_{2}(-1) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(+1) + \varepsilon_{2}(+1, -1), \hspace{0.2cm}{\it \Gamma}_{1}(-1) + \varepsilon_{2}(-1, -1)\right] = {\rm Min}\left[0.36 + 0.01, 0.04 + 1.21\right]\hspace{0.15cm}\underline {= 0.37} \hspace{0.05cm}.$$
Calculation of the minimum total error quantities


In the adjacent trellis diagram, the state "$1$" is to be interpreted as "$+1$" and "$0$" as "$–1$".

Then holds:

  • ${\it \Gamma}_2(+1) = 0.13$ is the minimum total error quantity under the hypothesis that the following symbol will be $a_3 = +1$.
  • Under this assumption, $a_2 = \ –1$ is more likely than $a_2 = +1$, as shown in the trellis diagram (the incoming path is blue).
  • A realistic alternative to the combination "$a_2 = \ –1, a_3 = +1$" is "$a_2 = +1, a_3 = \ –1$", which lead to the minimum total error quantity ${\it \Gamma}_2(–1) = 0.37$. Here, the incoming path is red.


(5)  For time $\nu = 3$, the following equations hold:

$$\varepsilon_{3}(+1, +1) \ = \ [0.5 - 1.0]^2=0.25,\hspace{0.2cm} \varepsilon_{3}(-1, +1) = [0.5 +0.2]^2=0.49 \hspace{0.05cm},$$
$$\varepsilon_{3}(+1, -1) \ = \ [0.5 -0.2]^2=0.09,\hspace{0.2cm} \varepsilon_{3}(-1, -1) = [0.5 +1.0]^2=2.25 \hspace{0.05cm}.$$
$$\Rightarrow \hspace{0.3cm}{\it \Gamma}_{3}(+1) \ = \ {\rm Min}\left[0.13 + 0.25, 0.37 + 0.49\right]\hspace{0.15cm}\underline {= 0.38} \hspace{0.05cm},\hspace{0.8cm} {\it \Gamma}_{3}(-1) \ = \ {\rm Min}\left[0.13 + 0.09, 0.37 + 2.25\right]\hspace{0.15cm}\underline {= 0.22} \hspace{0.05cm}.$$
  • In both equations, the first term in each case is the smaller, with ${\it \Gamma}_2(+1) = 0.13$ included in each case.
  • Therefore, the Viterbi receiver will certainly output $a_3 = +1$, no matter what information it will still get at later times ($\nu > 3$).


If we follow the continuous path in the trellis diagram, the other amplitude coefficients are also fixed by fixing $a_3 = +1$:

$$a_1 = a_2 = \ –1.$$