Difference between revisions of "Aufgaben:Exercise 3.12: Trellis Diagram for Two Precursors"

From LNTwww
Line 3: Line 3:
  
 
[[File:P_ID1478__Dig_A_3_12.png|right|frame|Trellis diagram for two precursors]]
 
[[File:P_ID1478__Dig_A_3_12.png|right|frame|Trellis diagram for two precursors]]
We assume the basic pulse values   $g_0$,  $g_{\rm –1}$  and  $g_{\rm –2}$:   
+
We assume the basic pulse values   $g_0\ne 0$,  $g_{\rm –1}\ne 0$  and  $g_{\rm –2}\ne 0$:   
*This means that the decision on the symbol   $a_{\rm \nu}$  is also influenced by the subsequent coefficients   $a_{\rm \nu +1}$  and  $a_{\rm \nu +2}$.   
+
*This means that the decision on the symbol  $a_{\rm \nu}$  is also influenced by the subsequent coefficients  $a_{\rm \nu +1}$  and  $a_{\rm \nu +2}$. 
*Thus, for each time point   $\nu$,  exactly eight error quantities   $\varepsilon_{\rm \nu}$  have to be determined, from which the minimum total error quantities   ${\it \Gamma}_{\rm \nu}(00)$,  ${\it \Gamma}_{\rm \nu}(01)$,  ${\it \Gamma}_{\rm \nu}(10)$  and  ${\it \Gamma}_{\rm \nu}(11)$  can be calculated.
+
*Here, for example,   ${\it \Gamma}_{\rm \nu}(01)$  provides information about the symbol   $a_{\rm \nu}$  under the assumption that   $a_{\rm \nu +1} = 0$  and  $a_{\rm \nu +2} = 1$  will be.
+
*Thus,  for each time point   $\nu$,  exactly eight  '''metrics'''   $\varepsilon_{\rm \nu}$  have to be determined, from which the  '''minimum accumulated metrics'''   ${\it \Gamma}_{\rm \nu}(00)$,  ${\it \Gamma}_{\rm \nu}(01)$,  ${\it \Gamma}_{\rm \nu}(10)$  and  ${\it \Gamma}_{\rm \nu}(11)$  can be calculated.
*Here, the minimum total error quantity   ${\it \Gamma}_{\rm \nu}(01)$  is the smaller value obtained from the comparison of
+
 
 +
*For example,   ${\it \Gamma}_{\rm \nu}(01)$  provides information about the symbol  $a_{\rm \nu}$  under the assumption that  $a_{\rm \nu +1} = 0$  and  $a_{\rm \nu +2} = 1$  will be.
 +
 
 +
*Here, the minimum accumulated metric   ${\it \Gamma}_{\rm \nu}(01)$  is the smaller value obtained from the comparison of
 
:$$\big[{\it \Gamma}_{\nu-1}(00) + \varepsilon_{\nu}(001)\big] \hspace{0.15cm}{\rm and}
 
:$$\big[{\it \Gamma}_{\nu-1}(00) + \varepsilon_{\nu}(001)\big] \hspace{0.15cm}{\rm and}
 
  \hspace{0.15cm}\big[{\it \Gamma}_{\nu-1}(10) + \varepsilon_{\nu}(101)\big].$$
 
  \hspace{0.15cm}\big[{\it \Gamma}_{\nu-1}(10) + \varepsilon_{\nu}(101)\big].$$
  
To calculate the minimum total error quantity   ${\it \Gamma}_2(10)$  in subtasks '''(1)''' and '''(2)''', assume the following numerical values:
+
To calculate the minimum accumulated metric   ${\it \Gamma}_2(10)$  in subtasks '''(1)''' and '''(2)''',  assume the following numerical values:
 
* unipolar amplitude coefficients:  $a_{\rm \nu} ∈ \{0, 1\}$,
 
* unipolar amplitude coefficients:  $a_{\rm \nu} ∈ \{0, 1\}$,
 +
 
* basic pulse values   $g_0 = 0.5$,  $g_{\rm –1} = 0.3$,  $g_{\rm –2} = 0.2$,
 
* basic pulse values   $g_0 = 0.5$,  $g_{\rm –1} = 0.3$,  $g_{\rm –2} = 0.2$,
* applied detection sample:  $d_2 = 0.2$,  
+
 
* Minimum total error quantities at time  $\nu = 1$:
+
* applied noisy detection sample:  $d_2 = 0.2$,
 +
 +
* minimum accumulated metric at time  $\nu = 1$:
 
:$${\it \Gamma}_{1}(00) = 0.0,\hspace{0.2cm}{\it \Gamma}_{1}(01) = 0.2, \hspace{0.2cm} {\it \Gamma}_{1}(10) = 0.6,\hspace{0.2cm}{\it \Gamma}_{1}(11) =
 
:$${\it \Gamma}_{1}(00) = 0.0,\hspace{0.2cm}{\it \Gamma}_{1}(01) = 0.2, \hspace{0.2cm} {\it \Gamma}_{1}(10) = 0.6,\hspace{0.2cm}{\it \Gamma}_{1}(11) =
 
  1.2
 
  1.2
Line 21: Line 27:
  
 
The graph shows the simplified trellis diagram for time points   $\nu = 1$  to   $\nu = 8$.   
 
The graph shows the simplified trellis diagram for time points   $\nu = 1$  to   $\nu = 8$.   
*Blue branches come from either   ${\it \Gamma}_{\rm \nu –1}(00)$  or   ${\it \Gamma}_{\rm \nu –1}(01)$  and denote a hypothetical "$0$".  
+
*Blue branches come from either   ${\it \Gamma}_{\rm \nu –1}(00)$   or   ${\it \Gamma}_{\rm \nu –1}(01)$   and denote a hypothetical  "$0$".
*In contrast, all red branches – starting from the   ${\it \Gamma}_{\rm \nu –1}(10)$  or   ${\it \Gamma}_{\rm \nu –1}(11)$  states – indicate the symbol "$1$".
+
 +
*In contrast,  all red branches – starting from the   ${\it \Gamma}_{\rm \nu –1}(10)$  or   ${\it \Gamma}_{\rm \nu –1}(11)$  states – indicate the symbol  "$1$".
  
  
  
 
+
Notes:  
 
 
''Notes:''
 
 
*The exercise belongs to the chapter    [[Digital_Signal_Transmission/Viterbi_Receiver|"Viterbi Receiver"]].
 
*The exercise belongs to the chapter    [[Digital_Signal_Transmission/Viterbi_Receiver|"Viterbi Receiver"]].
 
   
 
   
 
* All quantities here are to be understood normalized.
 
* All quantities here are to be understood normalized.
 +
 
* Also, assume unipolar and equal probability amplitude coefficients:   ${\rm Pr} (a_\nu = 0) = {\rm Pr} (a_\nu = 1)= 0.5.$
 
* Also, assume unipolar and equal probability amplitude coefficients:   ${\rm Pr} (a_\nu = 0) = {\rm Pr} (a_\nu = 1)= 0.5.$
* The topic is also covered in the interactive applet   [[Applets:Viterbi|"Properties of the Viterbi Receiver"]]. 
 
  
  
Line 39: Line 44:
 
===Questions===
 
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Calculate the following error quantities:
+
{Calculate the following metrics:
 
|type="{}"}
 
|type="{}"}
 
$\varepsilon_2(010) \ = \ $ { 0.01 3% }
 
$\varepsilon_2(010) \ = \ $ { 0.01 3% }
Line 46: Line 51:
 
$\varepsilon_2(111) \ = \ $ { 0.64 3% }
 
$\varepsilon_2(111) \ = \ $ { 0.64 3% }
  
{Calculate the following minimum total error quantities:
+
{Calculate the following minimum accumulated metrics:
 
|type="{}"}
 
|type="{}"}
 
${\it \Gamma}_2(10) \ = \ $ { 0.21 3% }
 
${\it \Gamma}_2(10) \ = \ $ { 0.21 3% }
Line 53: Line 58:
 
{What are the symbols output by the Viterbi receiver?
 
{What are the symbols output by the Viterbi receiver?
 
|type="[]"}
 
|type="[]"}
+ The first seven symbols are &nbsp;$1011010$.
+
+ The first seven symbols are &nbsp; "$1011010$".
- The first seven symbols are &nbsp;$1101101$.
+
- The first seven symbols are &nbsp; "$1101101$".
 
- The last symbol &nbsp;$a_8 = 1$&nbsp; is safe.
 
- The last symbol &nbsp;$a_8 = 1$&nbsp; is safe.
 
+ No definite statement can be made about the symbol &nbsp;$a_8$.&nbsp;  
 
+ No definite statement can be made about the symbol &nbsp;$a_8$.&nbsp;  

Revision as of 17:24, 4 July 2022

Trellis diagram for two precursors

We assume the basic pulse values   $g_0\ne 0$,  $g_{\rm –1}\ne 0$  and  $g_{\rm –2}\ne 0$: 

  • This means that the decision on the symbol  $a_{\rm \nu}$  is also influenced by the subsequent coefficients  $a_{\rm \nu +1}$  and  $a_{\rm \nu +2}$. 
  • Thus,  for each time point   $\nu$,  exactly eight  metrics   $\varepsilon_{\rm \nu}$  have to be determined, from which the  minimum accumulated metrics   ${\it \Gamma}_{\rm \nu}(00)$,  ${\it \Gamma}_{\rm \nu}(01)$,  ${\it \Gamma}_{\rm \nu}(10)$  and  ${\it \Gamma}_{\rm \nu}(11)$  can be calculated.
  • For example,   ${\it \Gamma}_{\rm \nu}(01)$  provides information about the symbol  $a_{\rm \nu}$  under the assumption that  $a_{\rm \nu +1} = 0$  and  $a_{\rm \nu +2} = 1$  will be.
  • Here, the minimum accumulated metric   ${\it \Gamma}_{\rm \nu}(01)$  is the smaller value obtained from the comparison of
$$\big[{\it \Gamma}_{\nu-1}(00) + \varepsilon_{\nu}(001)\big] \hspace{0.15cm}{\rm and} \hspace{0.15cm}\big[{\it \Gamma}_{\nu-1}(10) + \varepsilon_{\nu}(101)\big].$$

To calculate the minimum accumulated metric   ${\it \Gamma}_2(10)$  in subtasks (1) and (2),  assume the following numerical values:

  • unipolar amplitude coefficients:  $a_{\rm \nu} ∈ \{0, 1\}$,
  • basic pulse values   $g_0 = 0.5$,  $g_{\rm –1} = 0.3$,  $g_{\rm –2} = 0.2$,
  • applied noisy detection sample:  $d_2 = 0.2$,
  • minimum accumulated metric at time  $\nu = 1$:
$${\it \Gamma}_{1}(00) = 0.0,\hspace{0.2cm}{\it \Gamma}_{1}(01) = 0.2, \hspace{0.2cm} {\it \Gamma}_{1}(10) = 0.6,\hspace{0.2cm}{\it \Gamma}_{1}(11) = 1.2 \hspace{0.05cm}.$$

The graph shows the simplified trellis diagram for time points   $\nu = 1$  to   $\nu = 8$. 

  • Blue branches come from either   ${\it \Gamma}_{\rm \nu –1}(00)$   or   ${\it \Gamma}_{\rm \nu –1}(01)$   and denote a hypothetical  "$0$".
  • In contrast,  all red branches – starting from the   ${\it \Gamma}_{\rm \nu –1}(10)$  or   ${\it \Gamma}_{\rm \nu –1}(11)$  states – indicate the symbol  "$1$".


Notes:

  • All quantities here are to be understood normalized.
  • Also, assume unipolar and equal probability amplitude coefficients:   ${\rm Pr} (a_\nu = 0) = {\rm Pr} (a_\nu = 1)= 0.5.$


Questions

1

Calculate the following metrics:

$\varepsilon_2(010) \ = \ $

$\varepsilon_2(011) \ = \ $

$\varepsilon_2(110) \ = \ $

$\varepsilon_2(111) \ = \ $

2

Calculate the following minimum accumulated metrics:

${\it \Gamma}_2(10) \ = \ $

${\it \Gamma}_2(11) \ = \ $

3

What are the symbols output by the Viterbi receiver?

The first seven symbols are   "$1011010$".
The first seven symbols are   "$1101101$".
The last symbol  $a_8 = 1$  is safe.
No definite statement can be made about the symbol  $a_8$. 


Solution

(1)  The first error quantity is calculated as follows:

$$\varepsilon_{2}(010) = [d_0 - 0 \cdot g_0 - 1 \cdot g_{-1}- 0 \cdot g_{-2}]^2= [0.2 -0.3]^2\hspace{0.15cm}\underline {=0.01} \hspace{0.05cm}.$$

Correspondingly, for the other error quantities:

$$\varepsilon_{2}(011) \ = \ [0.2 -0.3- 0.2]^2\hspace{0.15cm}\underline {=0.09}\hspace{0.05cm},$$
$$\varepsilon_{2}(110) \ = \ [0.2 -0.5- 0.3]^2\hspace{0.15cm}\underline {=0.36}\hspace{0.05cm},$$
$$\varepsilon_{2}(111) \ = \ [0.2 -0.5- 0.3-0.2]^2\hspace{0.15cm}\underline {=0.64} \hspace{0.05cm}.$$


(2)  The task is to find the minimum value of each of two comparison values:

$${\it \Gamma}_{2}(10) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(01) + \varepsilon_{2}(010), \hspace{0.2cm}{\it \Gamma}_{1}(11) + \varepsilon_{2}(110)\right] = {\rm Min}\left[0.2+ 0.01, 1.2 + 0.36\right]\hspace{0.15cm}\underline {= 0.21} \hspace{0.05cm},$$
$${\it \Gamma}_{2}(11) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(01) + \varepsilon_{2}(011), \hspace{0.2cm}{\it \Gamma}_{1}(11) + \varepsilon_{2}(111)\right] = {\rm Min}\left[0.2+ 0.09, 1.2 + 0.64\right]\hspace{0.15cm}\underline {= 0.29} \hspace{0.05cm}.$$


(3)  The first and last solutions are correct:

  • The sequence $1011010$ can be recognized from the continuous path:     "red – blue – red – red – blue – red – blue".
  • On the other hand, no final statement can be made about the symbol $a_8$ at time $\nu = 8$:
  • Only under the hypothesis $a_9 = 1$ and $a_{\rm 10} = 1$ one would decide for $a_8 = 0$, under other hypotheses for $a_8 = 1$.