Difference between revisions of "Aufgaben:Exercise 3.13: Path Weighting Function again"

From LNTwww
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Distanzeigenschaften und Fehlerwahrscheinlichkeitsschranken}}
+
{{quiz-Header|Buchseite=Channel_Coding/Distance_Characteristics_and_Error_Probability_Barriers}}
  
[[File:P_ID2711__KC_A_3_13.png|right|frame|Zur Reduktion des Zustandsübergangsdiagramms]]
+
[[File:P_ID2711__KC_A_3_13.png|right|frame|For the reduction of the state transition diagram]]
Auf der Seite  [[Channel_Coding/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken#Regeln_zur_Manipulation_des_Zustands.C3.BCbergangsdiagramms|Regeln zur Manipulation des Zustandsübergangsdiagramms]]  wurde für das Beispiel unseres Rate–1/2–Standardcodes mit Gedächtnis  $m = 2$  und der Übertragungsfunktionsmatrix
+
On the  [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Barriers#Rules_for_manipulating_the_state_transition_diagram|"Rules for manipulating the state transition diagram"]]  page, for the example of our rate 1/2 standard code with memory  $m = 2$  and the transfer function matrix
 
:$${\boldsymbol{\rm G}}(D) = \big ( 1 + D + D^2\hspace{0.05cm},\hspace{0.1cm} 1  + D^2 \hspace{0.05cm}\big )$$
 
:$${\boldsymbol{\rm G}}(D) = \big ( 1 + D + D^2\hspace{0.05cm},\hspace{0.1cm} 1  + D^2 \hspace{0.05cm}\big )$$
  
die Berechnung der Pfadgewichtsfunktionen sehr ausführlich beschrieben. Als Ergebnisse wurden genannt:
+
the calculation of path weighting enumerator functions was described in great detail. The results given were:
 
:$$T_{\rm enh}(X, U) \hspace{-0.2cm} \ = \ \hspace{-0.2cm}  \frac{U\hspace{-0.05cm} X^5}{1- 2U\hspace{-0.05cm}X}  =U\hspace{-0.05cm}X^5 \cdot \big [ 1 + (2U\hspace{-0.08cm}X) + (2U\hspace{-0.08cm}X)^2 + \text{...}  \hspace{0.05cm} \big ] \hspace{0.01cm},$$
 
:$$T_{\rm enh}(X, U) \hspace{-0.2cm} \ = \ \hspace{-0.2cm}  \frac{U\hspace{-0.05cm} X^5}{1- 2U\hspace{-0.05cm}X}  =U\hspace{-0.05cm}X^5 \cdot \big [ 1 + (2U\hspace{-0.08cm}X) + (2U\hspace{-0.08cm}X)^2 + \text{...}  \hspace{0.05cm} \big ] \hspace{0.01cm},$$
 
:$$T(X) \hspace{-0.2cm} \ = \ \hspace{-0.2cm}  \frac{X^5}{1- 2X}  =  X^5 \cdot \big [ 1 + (2X) + (2X)^2 + \text{...} \hspace{0.05cm} \big ] \hspace{0.05cm}.$$
 
:$$T(X) \hspace{-0.2cm} \ = \ \hspace{-0.2cm}  \frac{X^5}{1- 2X}  =  X^5 \cdot \big [ 1 + (2X) + (2X)^2 + \text{...} \hspace{0.05cm} \big ] \hspace{0.05cm}.$$
  
Nun sollen die gleichen Berechnungen für den  [[Channel_Coding/Algebraische_und_polynomische_Beschreibung#Systematische_Faltungscodes|äquivalenten systematischen Code]]  mit der Übertragungsfunktionsmatrix
+
Now the same calculations shall be done for the  [[Channel_Coding/Algebraic_and_Polynomial_Description#Systematic_convolutional_codes|"equivalent systematic code"]]  with the transfer function matrix
:$${\boldsymbol{\rm G}}(D) = \big ( 1 \hspace{0.05cm},\hspace{0.1cm} (1 + D^2)/(1 + D + D^2) \hspace{0.05cm}\big )$$
+
:$${\boldsymbol{\rm G}}(D) = \big ( 1 \hspace{0.05cm},\hspace{0.1cm} (1 + D^2)/(1 + D + D^2) \hspace{0.05cm}\big )$$
  
durchgeführt werden.
+
can be performed.
  
*Die Grafik zeigt das Zustandsübergangsdiagramm  $\rm (A)$  und die Struktur des reduzierten Diagramms  $\rm (B)$, wobei die Übergänge mit  $A(X, \, U), \ \text{...}\ , \ G(X, \, U)$  allgemein bezeichnet sind.  
+
*The diagram shows the state transition diagram  $\rm (A)$  and the structure of the reduced diagram  $\rm (B)$, where the transitions are denoted by  $A(X, \, U), \ \text{...}\ , \ G(X, \, U)$  in general.  
*In der Teilaufgabe '''(1)''' sollen diese Abkürzungen an das Zustandsübergangsdiagramm  $\rm (A)$  angepasst werden.
+
*In the subtask '''(1)''' these abbreviations are to be adapted to the state transition diagram  $\rm (A)$  .
  
  
Line 25: Line 25:
  
  
''Hinweise:''
+
Hints:  
* Die Aufgabegehört zum Kapitel  [[Channel_Coding/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken| Distanzeigenschaften und Fehlerwahrscheinlichkeitsschranken]].  
+
* This exercise belongs to the chapter  [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Barriers| "Distance Characteristics and Error Probability Barriers"]].  
* Zur Lösung der Teilaufgaben '''(2)''' und '''(3)''' verweisen wir hier nochmals auf die Seite  [[Channel_Coding/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken#Regeln_zur_Manipulation_des_Zustands.C3.BCbergangsdiagramms|Regeln zur Manipulation des Zustandsübergangsdiagramms]] im Theorieteil.
+
* For the solution of the subtasks '''(2)'' and '''(3)''' we refer here again to the page  [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Barriers#Rules_for_manipulating_the_state_transition_diagram|"Rules for manipulating the state transition diagram"]] in the theory section.
  
  
  
===Fragebogen===
+
===Solution===
 
<quiz display=simple>
 
<quiz display=simple>
{Für welche Ausdrücke stehen die nachfolgenden Abkürzungen?
+
{What expressions do the following abbreviations stand for?
 
|type="[]"}
 
|type="[]"}
 
+ $A(X, \, U) = UX^2$,
 
+ $A(X, \, U) = UX^2$,
Line 43: Line 43:
 
+ $G(X, \, U) = UX^2$.
 
+ $G(X, \, U) = UX^2$.
  
{Welche Ausdrücke gelten für die erweiterte Pfadgewichtsfunktion?
+
{What expressions apply to the extended path weighting enumerator function?
 
|type="[]"}
 
|type="[]"}
 
- $T_{\rm enh}(X, \, U) = UX^5 \ / \ (1 \, &ndash;2UX)$.
 
- $T_{\rm enh}(X, \, U) = UX^5 \ / \ (1 \, &ndash;2UX)$.
 
- $T_{\rm enh}(X, \, U) = UX^5 + 2 U^2X^6 + 4U^3X^7 + 8U^4X^8 + \ \text{...}$,
 
- $T_{\rm enh}(X, \, U) = UX^5 + 2 U^2X^6 + 4U^3X^7 + 8U^4X^8 + \ \text{...}$,
+ Keiner der Vorschläge ist richtig.
+
+ None of the proposals are correct.
  
{Welche Ausdrücke gelten für die "einfache" Pfadgewichtsfunktion?
+
{What expressions apply to the "simple" path weighting enumerator function?
 
|type="[]"}
 
|type="[]"}
 
+ $T(X) = X^5 \ / \ (1 \, &ndash;2X)$.
 
+ $T(X) = X^5 \ / \ (1 \, &ndash;2X)$.
 
+ $T(X) = X^5 + 2X^6 + 4X^7 + 8X^8 + \ \text{...} $
 
+ $T(X) = X^5 + 2X^6 + 4X^7 + 8X^8 + \ \text{...} $
- Keiner der Vorschläge ist richtig.
+
- None of the proposals are correct.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; <u>Alle Lösungsvorschläge</u> sind richtig. Im angepassten Diagramm &nbsp;$\rm (B)$&nbsp; sind alle Übergänge eingezeichnet:
+
'''(1)'''&nbsp; <u>All proposed solutions</u> are correct. In the adapted diagram &nbsp;$\rm (B)$&nbsp; all transitions are drawn:
  
[[File:P_ID2712__KC_A_3_13a.png|right|frame|Zur Reduktion des Zustandsübergangsdiagramms]]
+
[[File:P_ID2712__KC_A_3_13a.png|right|frame|Reduction of the state transition diagram]]
  
*Der Übergang von $S_0$ nach $S_1$ ist durch "$1 \ | \ 11$" gekennzeichnet.  
+
*The transition from $S_0$ to $S_1$ is denoted by "$1 \ | \ 11$".  
*Die Ausgangssequenz $\underline{x}_i = (11)$ wird durch $X^2$ ausgedrückt, das Eingangsbit $u_i = 1$ durch $U$.  
+
*The output sequence $\underline{x}_i = (11)$ is expressed by $X^2$, the input bit $u_i = 1$ by $U$.  
*Das gleiche Ergebnis erhält man für $G(X, \, U)$:
+
*The same result is obtained for $G(X, \, U)$:
 
:$$A(X, U) = G(X, U)= UX^2
 
:$$A(X, U) = G(X, U)= UX^2
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Die Ausgangssequenzen $\underline{x}_i = (01)$ sowie $\underline{x}_i = (10)$ werden beide mit $X$ markiert.  
+
*The output sequences $\underline{x}_i = (01)$ as well as $\underline{x}_i = (10)$ are both marked with $X$.  
*Unter Berücksichtigung der Eingangsbits erhält man somit:
+
*Taking into account the input bits, we thus obtain:
 
:$$u_i = 1\hspace{-0.1cm}:\hspace{0.15cm} B(X, U) = D(X, U)= UX\hspace{0.05cm},$$
 
:$$u_i = 1\hspace{-0.1cm}:\hspace{0.15cm} B(X, U) = D(X, U)= UX\hspace{0.05cm},$$
 
:$$u_i = 0\hspace{-0.1cm}:\hspace{0.15cm} C(X, U) = E(X, U)= X
 
:$$u_i = 0\hspace{-0.1cm}:\hspace{0.15cm} C(X, U) = E(X, U)= X
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Der Übergang "$0 \ | \ 00$" von $S_2$ nach $S_1$ wird durch $F(X, \, U) = 1$ ausgedrückt.  
+
*The transition "$0 \ | \ 00$" from $S_2$ to $S_1$ is expressed by $F(X, \, U) = 1$.  
  
  
  
'''(2)'''&nbsp; Entsprechend der Vorgehensweise auf der Seite [[Channel_Coding/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken#Regeln_zur_Manipulation_des_Zustands.C3.BCbergangsdiagramms|Regeln zur Manipulation des Zustandsübergangsdiagramms]] im Theorieteil wird zunächst der Übergang von $S_1$ nach $S_2$ via $S_3$ durch einen <i>Ring</i> zusammengefasst.
+
'''(2)'''&nbsp; According to the procedure on page [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Barriers#Rules_for_manipulating_the_state_transition_diagram|"Rules for manipulating the state transition diagram"]] in the theory section, first the transition from $S_1$ to $S_2$ via $S_3$ is summarized by an <i>ring</i>.
* Man erhält für die rote Hinterlegung im Diagramm &nbsp;$\rm (B)$:
+
* One obtains for the red background in the diagram &nbsp;$\rm (B)$:
 
:$$T_1(X, U) =  \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)} = \frac{X \cdot X}{1- U \cdot X}  
 
:$$T_1(X, U) =  \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)} = \frac{X \cdot X}{1- U \cdot X}  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
* Die beiden <i>parallelen Übergänge</i> entsprechend der blauen Hinterlegung im Diagramm &nbsp;$\rm (C)$&nbsp; können wie folgt kombiniert werden:
+
* The two <i>parallel transitions</i> corresponding to the blue background in the diagram &nbsp;$\rm (C)$&nbsp; can be combined as follows:
 
:$$T_2(X, U) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  T_1(X, U) + B(X, U) =\frac{X^2}{1- U  X}+ U  X =
 
:$$T_2(X, U) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  T_1(X, U) + B(X, U) =\frac{X^2}{1- U  X}+ U  X =
 
  \frac{X^2 + U- U^2X^2}{1- U  X}  
 
  \frac{X^2 + U- U^2X^2}{1- U  X}  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
* Die erweiterte Pfadgewichtsfunktion ergibt sich entsprechend Diagramm &nbsp;$\rm (D)$&nbsp; als <i>Rückkopplung</i>:
+
* The extended path weighting enumerator function results according to diagram &nbsp;$\rm (D)$&nbsp; as <i>feedback</i>:
 
:$$T_{\rm enh}(X, U) =  \frac{A(X, U) \cdot G(X, U)\cdot T_2(X, U)}{1- F(X, U) \cdot T_2(X, U)}  
 
:$$T_{\rm enh}(X, U) =  \frac{A(X, U) \cdot G(X, U)\cdot T_2(X, U)}{1- F(X, U) \cdot T_2(X, U)}  
 
=  \frac{UX^2 \cdot UX^2\cdot \frac{X^2 + UX- U^2X^2}{1- U  X}}{1- 1 \cdot \frac{X^2 + UX- U^2X^2}{1- U  X}}\hspace{0.05cm}.$$
 
=  \frac{UX^2 \cdot UX^2\cdot \frac{X^2 + UX- U^2X^2}{1- U  X}}{1- 1 \cdot \frac{X^2 + UX- U^2X^2}{1- U  X}}\hspace{0.05cm}.$$
  
Dem Autor ist es auch nach mehreren Versuchen nicht gelungen, diesen Ausdruck zielführend weiter zu vereinfachen. Er tendiert zum <u>Lösungsvorschlag 3</u> mit dem Zusatz "ohne Gewähr".  
+
Even after several attempts, the author has not succeeded in further simplifying this expression in a target-oriented way. He tends to the <u>proposed solution 3</u> with the addition "without guarantee".  
*Dieses Ergebnis würde jedoch bedeuten, dass sich die erweiterte Pfadgewichtsfunktion des äquivalenten systematischen Codes von der des nichtsystematischen Codes unterscheidet.  
+
*However, this result would imply that the extended path weighting enumerator function of the equivalent systematic code is different from that of the nonsystematic code.  
*Wir werden diese Frage noch mit einem Fachmann klären.
+
*We will still clarify this issue with an expert.
  
  
'''(3)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 2</u>:
+
'''(3)'''&nbsp; Correct are the <u>proposed solutions 1 and 2</u>:
*Setzt man in der erweiterten Funktion $T_{\rm enh}(X, \, U)$ den Formalparameter $U = 1$, so erhält man den Lösungsvorschlag 1:
+
*If one sets the formal parameter $U = 1$ in the extended function $T_{\rm enh}(X, \, U)$, one obtains the solution proposition 1:
 
:$$T(X) =  \frac{X^4 \cdot  \frac{X^2 + X- X^2}{1- X}}{1- \frac{X^2 + X- X^2}{1- X}}=
 
:$$T(X) =  \frac{X^4 \cdot  \frac{X^2 + X- X^2}{1- X}}{1- \frac{X^2 + X- X^2}{1- X}}=
 
\frac{X^5 }{1- X - X} =
 
\frac{X^5 }{1- X - X} =
 
\frac{X^5 }{1- 2X} \hspace{0.05cm}.$$
 
\frac{X^5 }{1- 2X} \hspace{0.05cm}.$$
  
*Mit der Reihenentwicklung $1/(1 \, &ndash;x) = 1 + x + x^2 + \ \text{...}\ $ kommt man zum Lösungsvorschlag 2.  
+
*Using the series expansion $1/(1 \, &ndash;x) = 1 + x + x^2 + \ \text{...}\ $, we arrive at the proposed solution 2.  
*Das heißt: Die einfache Pfadgewichtsfunktion $T(X)$ stimmt bei beiden Codes überein.
+
*That is, the simple path weighting enumerator function $T(X)$ matches for both codes.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 22:32, 20 October 2022

For the reduction of the state transition diagram

On the  "Rules for manipulating the state transition diagram"  page, for the example of our rate 1/2 standard code with memory  $m = 2$  and the transfer function matrix

$${\boldsymbol{\rm G}}(D) = \big ( 1 + D + D^2\hspace{0.05cm},\hspace{0.1cm} 1 + D^2 \hspace{0.05cm}\big )$$

the calculation of path weighting enumerator functions was described in great detail. The results given were:

$$T_{\rm enh}(X, U) \hspace{-0.2cm} \ = \ \hspace{-0.2cm} \frac{U\hspace{-0.05cm} X^5}{1- 2U\hspace{-0.05cm}X} =U\hspace{-0.05cm}X^5 \cdot \big [ 1 + (2U\hspace{-0.08cm}X) + (2U\hspace{-0.08cm}X)^2 + \text{...} \hspace{0.05cm} \big ] \hspace{0.01cm},$$
$$T(X) \hspace{-0.2cm} \ = \ \hspace{-0.2cm} \frac{X^5}{1- 2X} = X^5 \cdot \big [ 1 + (2X) + (2X)^2 + \text{...} \hspace{0.05cm} \big ] \hspace{0.05cm}.$$

Now the same calculations shall be done for the  "equivalent systematic code"  with the transfer function matrix

$${\boldsymbol{\rm G}}(D) = \big ( 1 \hspace{0.05cm},\hspace{0.1cm} (1 + D^2)/(1 + D + D^2) \hspace{0.05cm}\big )$$

can be performed.

  • The diagram shows the state transition diagram  $\rm (A)$  and the structure of the reduced diagram  $\rm (B)$, where the transitions are denoted by  $A(X, \, U), \ \text{...}\ , \ G(X, \, U)$  in general.
  • In the subtask (1) these abbreviations are to be adapted to the state transition diagram  $\rm (A)$  .





Hints:


Solution

1

What expressions do the following abbreviations stand for?

$A(X, \, U) = UX^2$,
$B(X, \, U) = UX$,
$C(X, \, U) = X$,
$D(X, \, U) = UX$,
$E(X, \, U) = X$,
$F(X, \, U) = 1$,
$G(X, \, U) = UX^2$.

2

What expressions apply to the extended path weighting enumerator function?

$T_{\rm enh}(X, \, U) = UX^5 \ / \ (1 \, –2UX)$.
$T_{\rm enh}(X, \, U) = UX^5 + 2 U^2X^6 + 4U^3X^7 + 8U^4X^8 + \ \text{...}$,
None of the proposals are correct.

3

What expressions apply to the "simple" path weighting enumerator function?

$T(X) = X^5 \ / \ (1 \, –2X)$.
$T(X) = X^5 + 2X^6 + 4X^7 + 8X^8 + \ \text{...} $
None of the proposals are correct.


Solution

(1)  All proposed solutions are correct. In the adapted diagram  $\rm (B)$  all transitions are drawn:

Reduction of the state transition diagram
  • The transition from $S_0$ to $S_1$ is denoted by "$1 \ | \ 11$".
  • The output sequence $\underline{x}_i = (11)$ is expressed by $X^2$, the input bit $u_i = 1$ by $U$.
  • The same result is obtained for $G(X, \, U)$:
$$A(X, U) = G(X, U)= UX^2 \hspace{0.05cm}.$$
  • The output sequences $\underline{x}_i = (01)$ as well as $\underline{x}_i = (10)$ are both marked with $X$.
  • Taking into account the input bits, we thus obtain:
$$u_i = 1\hspace{-0.1cm}:\hspace{0.15cm} B(X, U) = D(X, U)= UX\hspace{0.05cm},$$
$$u_i = 0\hspace{-0.1cm}:\hspace{0.15cm} C(X, U) = E(X, U)= X \hspace{0.05cm}.$$
  • The transition "$0 \ | \ 00$" from $S_2$ to $S_1$ is expressed by $F(X, \, U) = 1$.


(2)  According to the procedure on page "Rules for manipulating the state transition diagram" in the theory section, first the transition from $S_1$ to $S_2$ via $S_3$ is summarized by an ring.

  • One obtains for the red background in the diagram  $\rm (B)$:
$$T_1(X, U) = \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)} = \frac{X \cdot X}{1- U \cdot X} \hspace{0.05cm}.$$
  • The two parallel transitions corresponding to the blue background in the diagram  $\rm (C)$  can be combined as follows:
$$T_2(X, U) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} T_1(X, U) + B(X, U) =\frac{X^2}{1- U X}+ U X = \frac{X^2 + U- U^2X^2}{1- U X} \hspace{0.05cm}.$$
  • The extended path weighting enumerator function results according to diagram  $\rm (D)$  as feedback:
$$T_{\rm enh}(X, U) = \frac{A(X, U) \cdot G(X, U)\cdot T_2(X, U)}{1- F(X, U) \cdot T_2(X, U)} = \frac{UX^2 \cdot UX^2\cdot \frac{X^2 + UX- U^2X^2}{1- U X}}{1- 1 \cdot \frac{X^2 + UX- U^2X^2}{1- U X}}\hspace{0.05cm}.$$

Even after several attempts, the author has not succeeded in further simplifying this expression in a target-oriented way. He tends to the proposed solution 3 with the addition "without guarantee".

  • However, this result would imply that the extended path weighting enumerator function of the equivalent systematic code is different from that of the nonsystematic code.
  • We will still clarify this issue with an expert.


(3)  Correct are the proposed solutions 1 and 2:

  • If one sets the formal parameter $U = 1$ in the extended function $T_{\rm enh}(X, \, U)$, one obtains the solution proposition 1:
$$T(X) = \frac{X^4 \cdot \frac{X^2 + X- X^2}{1- X}}{1- \frac{X^2 + X- X^2}{1- X}}= \frac{X^5 }{1- X - X} = \frac{X^5 }{1- 2X} \hspace{0.05cm}.$$
  • Using the series expansion $1/(1 \, –x) = 1 + x + x^2 + \ \text{...}\ $, we arrive at the proposed solution 2.
  • That is, the simple path weighting enumerator function $T(X)$ matches for both codes.