Difference between revisions of "Aufgaben:Exercise 3.13: Threshold Decision vs. DFE vs. Maximum Likelihood"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Digitalsignalübertragung/Viterbi–Empfänger}} Datei:P_ID1479__Dig_A_3_13.png|right|frame|Fehlerwahrscheinlichkeitsvergleich SW -…“)
 
 
(42 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Viterbi–Empfänger}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Viterbi_Receiver}}
 +
'''Bitte diese Aufgabe sehr genau kontrollieren. Da habe ich etliche Änderungen vorgenommen.'''
  
[[File:P_ID1479__Dig_A_3_13.png|right|frame|Fehlerwahrscheinlichkeitsvergleich SW - DFE - ML]]
+
[[File:P_ID1479__Dig_A_3_13.png|right|frame|Error probabilities in comparison: <br>$\bullet$ &nbsp; Threshold Decision&nbsp; $\rm (SE)$, <br>$\bullet$ &nbsp; Decision Feedback Equalization&nbsp; $\text{(DFE)}$, <br>$\bullet$ &nbsp;  Maximum Likelihood Detection &nbsp; $\text{(ML)}$]]
Es sollen Fehlerwahrscheinlichkeiten verschiedener Empfängertypen miteinander verglichen werden. Im Einzelnen werden betrachtet:
+
Error probabilities of different receiver types are to be compared.&nbsp; Considered are:  
* Schwellenwertentscheidung ($p_{\rm SE}$),
+
* Threshold Decision&nbsp; $($German:&nbsp; "Schwellenwertentscheidung" &nbsp; &rArr; &nbsp; "$\rm SE$"$)$ &nbsp; &rArr; &nbsp; error probability &nbsp;$p_{\rm SE}$,
* Entscheidungsrückkopplung ($p_{\rm DFE}$) und
+
* Decision Feedback Equalization&nbsp; $\rm (DFE)$ &nbsp; &rArr; &nbsp; error probability &nbsp;$p_{\rm DFE}$ and
* Maximum&ndash;Likelihood&ndash;Detektion ($p_{\rm ML}$).
+
* Maximum Likelihood Detection&nbsp; $\rm (ML)$ &nbsp; &nbsp; &rArr; &nbsp; error probability &nbsp;$p_{\rm ML}$.
  
Der &bdquo;Hauptwert&rdquo; $g_0$, der Vorläufer $g_{\rm &ndash;1}$ und der Nachläufer $g_1$ des Detektionsgrundimpulses sowie der Detektionsstöreffektivwert vor dem jeweiligen Entscheider ($\sigma_d$) sind für vier Systemvarianten <b>A</b>, <b>B</b>, <b>C</b> und <b>D</b> in der Tabelle angegeben.
 
  
Ausgegangen wird von bipolaren Amplitudenkoeffizienten, so dass zum Beispiel für die ungünstigste Fehlerwahrscheinlichkeit des Empfängers mit einfachem Schwellenwertenentscheider gilt:
+
In the table given are four different parameter sets &nbsp; $\rm A$,&nbsp; $\rm B$,&nbsp; $\rm C$&nbsp; and&nbsp; $\rm D$:
:$$p_{\rm U,\hspace{0.05cm} SE }  =  \left\{ \begin{array}{c} {\rm Q}\left[ ({g_0-|g_{-1}|-|g_{1}|})/{\sigma_d} \right]$$
+
*The&nbsp; "main value" &nbsp;$g_0$&nbsp; of the basic detection pulse,
:$$ {\rm Q}(0) = 0.5  \end{array} \right.\quad
+
*the&nbsp; "precursor"&nbsp; $g_{\rm &ndash;1}$,
\begin{array}{*{1}c} {\rm bei }\hspace{0.15cm}{\rm ge\ddot{o}ffnetem }\hspace{0.15cm}{\rm Auge },$$
+
*the&nbsp; "postcursor"&nbsp; (trailer)&nbsp; $g_1$,
:$${\rm bei }\hspace{0.15cm}{\rm geschlossenem }\hspace{0.15cm}{\rm Auge }. $$
+
*the rms value&nbsp; $\sigma_d$&nbsp;  of the detection noise component&nbsp; $d_{\rm N}(t)$&nbsp; before the respective decision.
:$$\end{array}\begin{array}{*{20}c}
 
  $$
 
:$$\end{array}$$
 
  
Beim Nyquistsystem <b>A</b> ist die mittlere Fehlerwahrscheinlichkeit genau so groß, nämlich
+
 
:$$p_{\rm SE }  =p_{\rm U,\hspace{0.05cm} SE }  =  {\rm Q}\left( {g_0}/{\sigma_d} \right)=  {\rm
+
Bipolar amplitude coefficients are assumed,&nbsp; so that,&nbsp; for example,&nbsp; for the worst-case error probability&nbsp; $($German:&nbsp; "ungünstigste Fehlerwahrscheinlichkeit" &nbsp; &rArr; &nbsp; "$\rm U$"$)$ &nbsp; of the receiver with threshold decision, the following applies:
 +
:$$p_{\rm U,\hspace{0.15cm} SE }  =  \left\{ \begin{array}{c} {\rm Q}\big [ ({g_0-|g_{-1}|-|g_{1}|})/{\sigma_d} \big ]\\
 +
\\{\rm Q}(0) = 0.5  \end{array} \right.\quad
 +
\begin{array}{*{1}c} {\rm with }\hspace{0.15cm}{\rm open }\hspace{0.15cm}{\rm eye },
 +
\\  \\{\rm with }\hspace{0.15cm}{\rm closed }\hspace{0.15cm}{\rm eye }. \\ \end{array}\begin{array}{*{20}c}
 +
  \\
 +
\end{array}$$
 +
 
 +
For the Nyquist system&nbsp; $\rm A$,&nbsp; the mean error probability is exactly the same, viz.
 +
:$$p_{\rm SE }  =p_{\rm U,\hspace{0.15cm} SE }  =  {\rm Q}\left( {g_0}/{\sigma_d} \right)=  {\rm
 
  Q}(5) \approx 2.87 \cdot 10^{-7}\hspace{0.05cm}.$$
 
  Q}(5) \approx 2.87 \cdot 10^{-7}\hspace{0.05cm}.$$
  
Bei den anderen hier betrachteten Systemvarianten <b>B</b>, <b>C</b> und <b>D</b> sind die Impulsinterferenzen so stark und der vorgegebene Störeffektivwert so klein, dass die folgende Näherung angewendet werden kann:
+
For the other system variants &nbsp; $\rm B$,&nbsp; $\rm C$&nbsp; and&nbsp; $\rm D$&nbsp; considered here, the intersymbol interferences are so strong and the given noise rms value is so small that the following approximation can be applied:
:$$p_{\rm SE }  \approx {1}/{4} \cdot p_{\rm U,\hspace{0.05cm} SE }
+
:$$p_{\rm SE }  \approx {1}/{4} \cdot p_{\rm U,\hspace{0.1cm} SE }
  =  {1}/{4} \cdot {\rm Q}\left( \frac {{\rm Max }\hspace{0.05cm}[0, \hspace{0.05cm}g_0-|g_{-1}|-|g_{1}|]}{\sigma_d} \right)\hspace{0.05cm}.$$
+
  =  {1}/{4} \cdot {\rm Q}\left( \frac {{\rm Max }\hspace{0.05cm}\big [0, \hspace{0.05cm}g_0-|g_{-1}|-|g_{1}|\big ]}{\sigma_d} \right)\hspace{0.05cm}.$$
  
Mit Ausnahme des Nyquistsystems <b>A</b> (hier ist $p_{\rm DFE} = p_{\rm SE}$) gilt für den DFE&ndash;Empfänger statt dessen:
+
Except for the Nyquist system&nbsp; $\rm A$&nbsp; $($here &nbsp;$p_{\rm DFE} = p_{\rm SE})$,&nbsp; the following approximation applies to the DFE receiver instead:
:$$p_{\rm DFE }  \approx {1}/{2} \cdot p_{\rm U,\hspace{0.05cm} DFE }
+
:$$p_{\rm DFE }  \approx {1}/{2} \cdot p_{\rm U,\hspace{0.1cm} DFE }
  =  {1}/{2} \cdot {\rm Q}\left( \frac{{\rm Max }\hspace{0.05cm}[0, \hspace{0.05cm}g_0-|g_{-1}|]}{\sigma_d} \right)\hspace{0.05cm}.$$
+
  =  {1}/{2} \cdot {\rm Q}\left( \frac{{\rm Max }\hspace{0.05cm}\big [0, \hspace{0.05cm}g_0-|g_{-1}|\big ]}{\sigma_d} \right)\hspace{0.05cm}.$$
  
Dagegen wurde auf der [[Digitalsignal%C3%BCbertragung/Viterbi%E2%80%93Empf%C3%A4nger#Fehlerwahrscheinlichkeit_bei_Maximum.E2.80.93Likelihood.E2.80.93Entscheidung| letzten Theorieseite]] zu diesem Kapitel gezeigt, dass für einen Empfänger mit ML&ndash;Entscheidung folgende Näherung zutrifft:
+
In contrast,&nbsp; it was shown in the&nbsp; [[Digital_Signal_Transmission/Viterbi_Receiver#Bit_error_probability_with_maximum_likelihood_decision|"last theory section"]]&nbsp; for this chapter that for a receiver with ML decision, the following approximation holds:
 
:$$p_{\rm ML }
 
:$$p_{\rm ML }
 
  =  {\rm Q}\left( \frac{{\rm Max }\hspace{0.05cm}[g_{\nu}]}{\sigma_d} \right)\hspace{0.05cm}.$$
 
  =  {\rm Q}\left( \frac{{\rm Max }\hspace{0.05cm}[g_{\nu}]}{\sigma_d} \right)\hspace{0.05cm}.$$
  
''Hinweise:''
+
 
* Die Aufgabe bezieht sich auf das Kapitel [[Digitalsignal%C3%BCbertragung/Viterbi%E2%80%93Empf%C3%A4nger| Viterbi&ndash;Empfänger]].
+
 
* Die Zahlenwerte der Q&ndash;Funktion können Sie mit dem Interaktionsmodul [https://intern.lntwww.de/cgi-bin/extern/uni.pl?uno=hyperlink&due=block&b_id=1706&hyperlink_typ=block_verweis&hyperlink_fenstergroesse=blockverweis_gross| Komplementäre Gaußsche Fehlerfunktionen] ermitteln.
+
Notes:  
* Um den im Theorieteil angegebenen Algorithmus für zwei Vorläufer anwenden zu können, müssten Sie folgende Umbenennungen vornehmen:
+
*The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Viterbi_Receiver|"Viterbi Receiver"]].
 +
 
 +
*Reference is also made to the chapters&nbsp; [[Digital_Signal_Transmission/Linear_Nyquist_Equalization|"Linear Nyquist Equalization"]]&nbsp; and&nbsp;  [[Digital_Signal_Transmission/Decision_Feedback|"Decision Feedback"]].
 +
 +
* You can determine the numerical values of the Q-function using the interaction module&nbsp; [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Complementary Gaussian Error Functions"]].&nbsp;
 +
 +
* To apply the algorithm given in the theory section for two precursors,&nbsp; you would have to make the following renamings&nbsp; <br>$($which,&nbsp; however,&nbsp; has no meaning for the calculation of the error probabilities$)$:
 
:$$g_{1 }\hspace{0.1cm}\Rightarrow \hspace{0.1cm}g_{0 },\hspace{0.4cm}
 
:$$g_{1 }\hspace{0.1cm}\Rightarrow \hspace{0.1cm}g_{0 },\hspace{0.4cm}
 
  g_{0 }\hspace{0.1cm}\Rightarrow \hspace{0.1cm}g_{-1 },\hspace{0.4cm}
 
  g_{0 }\hspace{0.1cm}\Rightarrow \hspace{0.1cm}g_{-1 },\hspace{0.4cm}
Line 44: Line 56:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Dies hat jedoch für die Berechnung der Fehlerwahrscheinlichkeiten keine Bedeutung.
 
  
 +
===Questions===
 +
<quiz display=simple>
 +
{What is the error probability for system &nbsp;$\rm A$&nbsp; with maximum likelihood detection&nbsp; $\rm (ML)$?
 +
|type="{}"}
 +
$\hspace{0.2cm} p_{\rm ML} \ = \ $  { 2.87 3% } $\ \cdot 10^{\rm &ndash;7} $
 +
 +
{What error probabilities are to be expected with system &nbsp;$\rm B$?&nbsp;
 +
|type="{}"}
 +
$\hspace{0.25cm} p_{\rm SE} \ = \ $ { 4 3% } $\ \% $
 +
$p_{\rm DFE} \ = \ $ { 0.31 3% } $\ \% $
 +
$\hspace{0.2cm} p_{\rm ML} \ = \ $ { 0.135 3% } $\ \% $
  
===Fragebogen===
+
{What are the error probabilities for system &nbsp;$\rm C$?
<quiz display=simple>
+
|type="{}"}
{Multiple-Choice Frage
+
$\hspace{0.25cm} p_{\rm SE} \ = \ $ { 12.5 3% } $\ \% $
|type="[]"}
+
$p_{\rm DFE} \ = \ $ { 15.0 3% } $\ \% $
- Falsch
+
$\hspace{0.2cm} p_{\rm ML} \ = \ $ { 2.27 3% } $\ \% $
+ Richtig
 
  
{Input-Box Frage
+
{What error probabilities are to be expected with system &nbsp;$\rm D$?&nbsp;
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$\hspace{0.25cm} p_{\rm SE} \ = \ $ { 25.0 3% } $\ \% $
 +
$p_{\rm DFE} \ = \ $ { 35.0 3% } $\ \% $
 +
$\hspace{0.2cm} p_{\rm ML} \ = \ $ { 2.27 3% } $\ \% $
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; Without intersymbol interference&nbsp; $\text{(system A)}$,&nbsp; the DFE and ML receivers do not improve over the simple threshold decision:
'''2.'''
+
:$$  p_{\rm DFE } = p_{\rm ML } = p_{\rm SE }  \hspace{0.15cm}\underline {\approx  2.87 \cdot 10^{-7}}
'''3.'''
+
\hspace{0.05cm}.$$
'''4.'''
+
 
'''5.'''
+
 
'''6.'''
+
'''(2)'''&nbsp; With&nbsp; $g_0 = 0.6$,&nbsp; $g_{\rm &ndash;1} = 0.1$&nbsp; and&nbsp; $g_1 = 0.3$,&nbsp; $\text{(system B)}$,&nbsp; one obtains approximately:
'''7.'''
+
:$$p_{\rm SE } \ \approx \ {1}/{4} \cdot {\rm Q}\left( \frac{0.6-0.1-0.3}{0.2} \right)= {1}/{4} \cdot{\rm Q}(1) \hspace{0.15cm}\underline {\approx 4\%
 +
\hspace{0.05cm}},$$
 +
:$$ p_{\rm DFE } \ \approx \ {1}/{2} \cdot {\rm Q}\left( \frac{0.6-0.1}{0.2} \right)= {1}/{2} \cdot {\rm Q}(2.5) \hspace{0.15cm}\underline {\approx
 +
0.31\%} \hspace{0.05cm},$$
 +
:$$ p_{\rm ML } \ \approx \ {\rm Q}\left( \frac{0.6}{0.2} \right) = {\rm Q}(3) \hspace{0.15cm}\underline {\approx 0.135\%}
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; With&nbsp; $g_0 = 0.4$&nbsp; and&nbsp; $g_1 = g_{\rm &ndash;1} = 0.3$&nbsp; $\text{(system C)}$,&nbsp; one obtains approximately:
 +
:$$p_{\rm SE } \ \approx \ {1}/{4} \cdot{\rm Q}(0) \hspace{0.15cm}\underline {= 12.5\%} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm closed }\hspace{0.15cm}{\rm eye }
 +
\hspace{0.05cm},$$
 +
:$$ p_{\rm DFE } \ \approx \ {1}/{2} \cdot {\rm Q}\left( \frac{0.4-0.3}{0.2} \right)= {1}/{2} \cdot {\rm Q}(0.5) \hspace{0.15cm}\underline {\approx
 +
15\% \hspace{0.05cm}},$$
 +
:$$ p_{\rm ML } \ \approx \ {\rm Q}\left( \frac{0.4}{0.2} \right) = {\rm Q}(2) \hspace{0.15cm}\underline {\approx
 +
2.27\%}
 +
\hspace{0.05cm}.$$
 +
 
 +
*Interesting is &ndash; and not a calculation error &ndash; that the DFE is worse than the conventional threshold decision when the error probability is&nbsp; $10\%$&nbsp; or more.
 +
*See also the solution for subtask&nbsp; '''(4)'''.
 +
 
 +
 
 +
'''(4)'''&nbsp; With system $\text{D}$,&nbsp; the DFE receiver also has a closed eye.
 +
*$p_{\rm DFE}$&nbsp; is greater than&nbsp; $p_{\rm SE}$,&nbsp; since the worst-case symbol sequence now occurs more frequently.&nbsp; According to the given simple approximation holds:
 +
:$$p_{\rm SE } = {1}/{4} \cdot{\rm Q}(0) = 0.125\hspace{0.05cm}, \hspace{0.2cm}
 +
p_{\rm DFE } = {1}/{2} \cdot{\rm Q}(0) \hspace{0.15cm}\underline {= 0.250}
 +
\hspace{0.05cm}.$$
 +
 
 +
*On the other hand,&nbsp; with an exact calculation one obtains:
 +
:$$p_{\rm SE } \ = \ {1}/{4} \cdot  {\rm Q}\left( \frac{0.3-0.4-0.3}{0.2}\right)
 +
+ {1}/{4} \cdot{\rm Q}\left( \frac{0.3-0.4+0.3}{0.2}\right)+ \ {1}/{4} \cdot {\rm Q}\left( \frac{0.3+0.4-0.3}{0.2}\right)
 +
+{1}/{4} \cdot{\rm Q}\left( \frac{0.3+0.4+0.3}{0.2}\right)$$
 +
:$$ \Rightarrow \hspace{0.3cm}p_{\rm SE } \ = \ {1}/{4} \cdot \left[ {\rm Q}(-2) + {\rm Q}(1) +{\rm Q}(2) +{\rm Q}(5) \right]
 +
={1}/{4} \cdot \left[ 1+ {\rm Q}(1)  +{\rm Q}(5) \right]
 +
  \hspace{0.05cm}.$$
 +
 
 +
*Because of&nbsp; ${\rm Q}(&ndash;2) + {\rm Q}(2) = 1$&nbsp; and&nbsp; ${\rm Q}(5) \approx 0$&nbsp; we obtain&nbsp; $p_{\rm SE} \approx 25.5\%$.
 +
 
 +
*The same applies to the DFE receiver:
 +
:$$p_{\rm DFE } \ = \ {1}/{2} \cdot  {\rm Q}\left( \frac{0.3-0.4}{0.2}\right)
 +
+ {1}/{2} \cdot{\rm Q}\left( \frac{0.3+0.4}{0.2}\right)= \ {1}/{2} \cdot \left[ {\rm Q}(-0.5) + {\rm Q}(3.5)
 +
\right] \approx\frac{1- {\rm Q}(0.5)}{2}\hspace{0.15cm}\underline {= 35\%}
 +
  \hspace{0.05cm}.$$
 +
 
 +
*In contrast,&nbsp; the error probability&nbsp; $p_{\rm ML}$&nbsp; of a maximum likelihood receiver is still&nbsp; ${\rm Q}(2) \hspace{0.15cm} \underline {= 2.27\%}$.
 +
 
 +
*The order of the basic detection pulse values is&nbsp; (almost)&nbsp; irrelevant for the error probability of the Viterbi receiver.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^3.8 Viterbi-Empfänger^]]
+
[[Category:Digital Signal Transmission: Exercises|^3.8 Viterbi Receiver^]]

Latest revision as of 13:21, 13 July 2022

Bitte diese Aufgabe sehr genau kontrollieren. Da habe ich etliche Änderungen vorgenommen.

Error probabilities in comparison:
$\bullet$   Threshold Decision  $\rm (SE)$,
$\bullet$   Decision Feedback Equalization  $\text{(DFE)}$,
$\bullet$   Maximum Likelihood Detection   $\text{(ML)}$

Error probabilities of different receiver types are to be compared.  Considered are:

  • Threshold Decision  $($German:  "Schwellenwertentscheidung"   ⇒   "$\rm SE$"$)$   ⇒   error probability  $p_{\rm SE}$,
  • Decision Feedback Equalization  $\rm (DFE)$   ⇒   error probability  $p_{\rm DFE}$ and
  • Maximum Likelihood Detection  $\rm (ML)$     ⇒   error probability  $p_{\rm ML}$.


In the table given are four different parameter sets   $\rm A$,  $\rm B$,  $\rm C$  and  $\rm D$:

  • The  "main value"  $g_0$  of the basic detection pulse,
  • the  "precursor"  $g_{\rm –1}$,
  • the  "postcursor"  (trailer)  $g_1$,
  • the rms value  $\sigma_d$  of the detection noise component  $d_{\rm N}(t)$  before the respective decision.


Bipolar amplitude coefficients are assumed,  so that,  for example,  for the worst-case error probability  $($German:  "ungünstigste Fehlerwahrscheinlichkeit"   ⇒   "$\rm U$"$)$   of the receiver with threshold decision, the following applies:

$$p_{\rm U,\hspace{0.15cm} SE } = \left\{ \begin{array}{c} {\rm Q}\big [ ({g_0-|g_{-1}|-|g_{1}|})/{\sigma_d} \big ]\\ \\{\rm Q}(0) = 0.5 \end{array} \right.\quad \begin{array}{*{1}c} {\rm with }\hspace{0.15cm}{\rm open }\hspace{0.15cm}{\rm eye }, \\ \\{\rm with }\hspace{0.15cm}{\rm closed }\hspace{0.15cm}{\rm eye }. \\ \end{array}\begin{array}{*{20}c} \\ \end{array}$$

For the Nyquist system  $\rm A$,  the mean error probability is exactly the same, viz.

$$p_{\rm SE } =p_{\rm U,\hspace{0.15cm} SE } = {\rm Q}\left( {g_0}/{\sigma_d} \right)= {\rm Q}(5) \approx 2.87 \cdot 10^{-7}\hspace{0.05cm}.$$

For the other system variants   $\rm B$,  $\rm C$  and  $\rm D$  considered here, the intersymbol interferences are so strong and the given noise rms value is so small that the following approximation can be applied:

$$p_{\rm SE } \approx {1}/{4} \cdot p_{\rm U,\hspace{0.1cm} SE } = {1}/{4} \cdot {\rm Q}\left( \frac {{\rm Max }\hspace{0.05cm}\big [0, \hspace{0.05cm}g_0-|g_{-1}|-|g_{1}|\big ]}{\sigma_d} \right)\hspace{0.05cm}.$$

Except for the Nyquist system  $\rm A$  $($here  $p_{\rm DFE} = p_{\rm SE})$,  the following approximation applies to the DFE receiver instead:

$$p_{\rm DFE } \approx {1}/{2} \cdot p_{\rm U,\hspace{0.1cm} DFE } = {1}/{2} \cdot {\rm Q}\left( \frac{{\rm Max }\hspace{0.05cm}\big [0, \hspace{0.05cm}g_0-|g_{-1}|\big ]}{\sigma_d} \right)\hspace{0.05cm}.$$

In contrast,  it was shown in the  "last theory section"  for this chapter that for a receiver with ML decision, the following approximation holds:

$$p_{\rm ML } = {\rm Q}\left( \frac{{\rm Max }\hspace{0.05cm}[g_{\nu}]}{\sigma_d} \right)\hspace{0.05cm}.$$


Notes:

  • To apply the algorithm given in the theory section for two precursors,  you would have to make the following renamings 
    $($which,  however,  has no meaning for the calculation of the error probabilities$)$:
$$g_{1 }\hspace{0.1cm}\Rightarrow \hspace{0.1cm}g_{0 },\hspace{0.4cm} g_{0 }\hspace{0.1cm}\Rightarrow \hspace{0.1cm}g_{-1 },\hspace{0.4cm} g_{-1 }\hspace{0.1cm}\Rightarrow \hspace{0.1cm}g_{-2 } \hspace{0.05cm}.$$


Questions

1

What is the error probability for system  $\rm A$  with maximum likelihood detection  $\rm (ML)$?

$\hspace{0.2cm} p_{\rm ML} \ = \ $

$\ \cdot 10^{\rm –7} $

2

What error probabilities are to be expected with system  $\rm B$? 

$\hspace{0.25cm} p_{\rm SE} \ = \ $

$\ \% $
$p_{\rm DFE} \ = \ $

$\ \% $
$\hspace{0.2cm} p_{\rm ML} \ = \ $

$\ \% $

3

What are the error probabilities for system  $\rm C$?

$\hspace{0.25cm} p_{\rm SE} \ = \ $

$\ \% $
$p_{\rm DFE} \ = \ $

$\ \% $
$\hspace{0.2cm} p_{\rm ML} \ = \ $

$\ \% $

4

What error probabilities are to be expected with system  $\rm D$? 

$\hspace{0.25cm} p_{\rm SE} \ = \ $

$\ \% $
$p_{\rm DFE} \ = \ $

$\ \% $
$\hspace{0.2cm} p_{\rm ML} \ = \ $

$\ \% $


Solution

(1)  Without intersymbol interference  $\text{(system A)}$,  the DFE and ML receivers do not improve over the simple threshold decision:

$$ p_{\rm DFE } = p_{\rm ML } = p_{\rm SE } \hspace{0.15cm}\underline {\approx 2.87 \cdot 10^{-7}} \hspace{0.05cm}.$$


(2)  With  $g_0 = 0.6$,  $g_{\rm –1} = 0.1$  and  $g_1 = 0.3$,  $\text{(system B)}$,  one obtains approximately:

$$p_{\rm SE } \ \approx \ {1}/{4} \cdot {\rm Q}\left( \frac{0.6-0.1-0.3}{0.2} \right)= {1}/{4} \cdot{\rm Q}(1) \hspace{0.15cm}\underline {\approx 4\% \hspace{0.05cm}},$$
$$ p_{\rm DFE } \ \approx \ {1}/{2} \cdot {\rm Q}\left( \frac{0.6-0.1}{0.2} \right)= {1}/{2} \cdot {\rm Q}(2.5) \hspace{0.15cm}\underline {\approx 0.31\%} \hspace{0.05cm},$$
$$ p_{\rm ML } \ \approx \ {\rm Q}\left( \frac{0.6}{0.2} \right) = {\rm Q}(3) \hspace{0.15cm}\underline {\approx 0.135\%} \hspace{0.05cm}.$$


(3)  With  $g_0 = 0.4$  and  $g_1 = g_{\rm –1} = 0.3$  $\text{(system C)}$,  one obtains approximately:

$$p_{\rm SE } \ \approx \ {1}/{4} \cdot{\rm Q}(0) \hspace{0.15cm}\underline {= 12.5\%} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm closed }\hspace{0.15cm}{\rm eye } \hspace{0.05cm},$$
$$ p_{\rm DFE } \ \approx \ {1}/{2} \cdot {\rm Q}\left( \frac{0.4-0.3}{0.2} \right)= {1}/{2} \cdot {\rm Q}(0.5) \hspace{0.15cm}\underline {\approx 15\% \hspace{0.05cm}},$$
$$ p_{\rm ML } \ \approx \ {\rm Q}\left( \frac{0.4}{0.2} \right) = {\rm Q}(2) \hspace{0.15cm}\underline {\approx 2.27\%} \hspace{0.05cm}.$$
  • Interesting is – and not a calculation error – that the DFE is worse than the conventional threshold decision when the error probability is  $10\%$  or more.
  • See also the solution for subtask  (4).


(4)  With system $\text{D}$,  the DFE receiver also has a closed eye.

  • $p_{\rm DFE}$  is greater than  $p_{\rm SE}$,  since the worst-case symbol sequence now occurs more frequently.  According to the given simple approximation holds:
$$p_{\rm SE } = {1}/{4} \cdot{\rm Q}(0) = 0.125\hspace{0.05cm}, \hspace{0.2cm} p_{\rm DFE } = {1}/{2} \cdot{\rm Q}(0) \hspace{0.15cm}\underline {= 0.250} \hspace{0.05cm}.$$
  • On the other hand,  with an exact calculation one obtains:
$$p_{\rm SE } \ = \ {1}/{4} \cdot {\rm Q}\left( \frac{0.3-0.4-0.3}{0.2}\right) + {1}/{4} \cdot{\rm Q}\left( \frac{0.3-0.4+0.3}{0.2}\right)+ \ {1}/{4} \cdot {\rm Q}\left( \frac{0.3+0.4-0.3}{0.2}\right) +{1}/{4} \cdot{\rm Q}\left( \frac{0.3+0.4+0.3}{0.2}\right)$$
$$ \Rightarrow \hspace{0.3cm}p_{\rm SE } \ = \ {1}/{4} \cdot \left[ {\rm Q}(-2) + {\rm Q}(1) +{\rm Q}(2) +{\rm Q}(5) \right] ={1}/{4} \cdot \left[ 1+ {\rm Q}(1) +{\rm Q}(5) \right] \hspace{0.05cm}.$$
  • Because of  ${\rm Q}(–2) + {\rm Q}(2) = 1$  and  ${\rm Q}(5) \approx 0$  we obtain  $p_{\rm SE} \approx 25.5\%$.
  • The same applies to the DFE receiver:
$$p_{\rm DFE } \ = \ {1}/{2} \cdot {\rm Q}\left( \frac{0.3-0.4}{0.2}\right) + {1}/{2} \cdot{\rm Q}\left( \frac{0.3+0.4}{0.2}\right)= \ {1}/{2} \cdot \left[ {\rm Q}(-0.5) + {\rm Q}(3.5) \right] \approx\frac{1- {\rm Q}(0.5)}{2}\hspace{0.15cm}\underline {= 35\%} \hspace{0.05cm}.$$
  • In contrast,  the error probability  $p_{\rm ML}$  of a maximum likelihood receiver is still  ${\rm Q}(2) \hspace{0.15cm} \underline {= 2.27\%}$.
  • The order of the basic detection pulse values is  (almost)  irrelevant for the error probability of the Viterbi receiver.