Difference between revisions of "Aufgaben:Exercise 3.13: Threshold Decision vs. DFE vs. Maximum Likelihood"

From LNTwww
 
(27 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Viterbi–Empfänger}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Viterbi_Receiver}}
 +
'''Bitte diese Aufgabe sehr genau kontrollieren. Da habe ich etliche Änderungen vorgenommen.'''
  
[[File:P_ID1479__Dig_A_3_13.png|right|frame|Fehlerwahrscheinlichkeitsvergleich SW - DFE - ML]]
+
[[File:P_ID1479__Dig_A_3_13.png|right|frame|Error probabilities in comparison: <br>$\bullet$ &nbsp; Threshold Decision&nbsp; $\rm (SE)$, <br>$\bullet$ &nbsp; Decision Feedback Equalization&nbsp; $\text{(DFE)}$, <br>$\bullet$ &nbsp;  Maximum Likelihood Detection &nbsp; $\text{(ML)}$]]
Es sollen Fehlerwahrscheinlichkeiten verschiedener Empfängertypen miteinander verglichen werden. Im Einzelnen werden betrachtet:
+
Error probabilities of different receiver types are to be compared.&nbsp; Considered are:  
* Schwellenwertentscheidung ($p_{\rm SE}$),
+
* Threshold Decision&nbsp; $($German:&nbsp; "Schwellenwertentscheidung" &nbsp; &rArr; &nbsp; "$\rm SE$"$)$ &nbsp; &rArr; &nbsp; error probability &nbsp;$p_{\rm SE}$,
* Entscheidungsrückkopplung ($p_{\rm DFE}$) und
+
* Decision Feedback Equalization&nbsp; $\rm (DFE)$ &nbsp; &rArr; &nbsp; error probability &nbsp;$p_{\rm DFE}$ and
* Maximum&ndash;Likelihood&ndash;Detektion ($p_{\rm ML}$).
+
* Maximum Likelihood Detection&nbsp; $\rm (ML)$ &nbsp; &nbsp; &rArr; &nbsp; error probability &nbsp;$p_{\rm ML}$.
  
  
Der &bdquo;Hauptwert&rdquo; $g_0$, der Vorläufer $g_{\rm &ndash;1}$ und der Nachläufer $g_1$ des Detektionsgrundimpulses sowie der Detektionsstöreffektivwert vor dem jeweiligen Entscheider ($\sigma_d$) sind für vier Systemvarianten <b>A</b>, <b>B</b>, <b>C</b> und <b>D</b> in der Tabelle angegeben.
+
In the table given are four different parameter sets &nbsp; $\rm A$,&nbsp; $\rm B$,&nbsp; $\rm C$&nbsp; and&nbsp; $\rm D$:
 +
*The&nbsp; "main value" &nbsp;$g_0$&nbsp; of the basic detection pulse,  
 +
*the&nbsp; "precursor"&nbsp; $g_{\rm &ndash;1}$,
 +
*the&nbsp; "postcursor"&nbsp; (trailer)&nbsp; $g_1$,
 +
*the rms value&nbsp; $\sigma_d$&nbsp;  of the detection noise component&nbsp; $d_{\rm N}(t)$&nbsp; before the respective decision.
  
Ausgegangen wird von bipolaren Amplitudenkoeffizienten, so dass zum Beispiel für die ungünstigste Fehlerwahrscheinlichkeit des Empfängers mit einfachem Schwellenwertenentscheider gilt:
+
 
:$$p_{\rm U,\hspace{0.05cm} SE }  =  \left\{ \begin{array}{c} {\rm Q}\left[ ({g_0-|g_{-1}|-|g_{1}|})/{\sigma_d} \right]\\
+
Bipolar amplitude coefficients are assumed,&nbsp; so that,&nbsp; for example,&nbsp; for the worst-case error probability&nbsp; $($German:&nbsp; "ungünstigste Fehlerwahrscheinlichkeit" &nbsp; &rArr; &nbsp; "$\rm U$"$)$ &nbsp; of the receiver with threshold decision, the following applies:
 +
:$$p_{\rm U,\hspace{0.15cm} SE }  =  \left\{ \begin{array}{c} {\rm Q}\big [ ({g_0-|g_{-1}|-|g_{1}|})/{\sigma_d} \big ]\\
 
  \\{\rm Q}(0) = 0.5  \end{array} \right.\quad
 
  \\{\rm Q}(0) = 0.5  \end{array} \right.\quad
\begin{array}{*{1}c} {\rm bei }\hspace{0.15cm}{\rm ge\ddot{o}ffnetem }\hspace{0.15cm}{\rm Auge },
+
\begin{array}{*{1}c} {\rm with }\hspace{0.15cm}{\rm open }\hspace{0.15cm}{\rm eye },
\\  \\{\rm bei }\hspace{0.15cm}{\rm geschlossenem }\hspace{0.15cm}{\rm Auge }. \\ \end{array}\begin{array}{*{20}c}
+
\\  \\{\rm with }\hspace{0.15cm}{\rm closed }\hspace{0.15cm}{\rm eye }. \\ \end{array}\begin{array}{*{20}c}
 
   \\
 
   \\
 
\end{array}$$
 
\end{array}$$
  
Beim Nyquistsystem <b>A</b> ist die mittlere Fehlerwahrscheinlichkeit genau so groß, nämlich
+
For the Nyquist system&nbsp; $\rm A$,&nbsp; the mean error probability is exactly the same, viz.
:$$p_{\rm SE }  =p_{\rm U,\hspace{0.05cm} SE }  =  {\rm Q}\left( {g_0}/{\sigma_d} \right)=  {\rm
+
:$$p_{\rm SE }  =p_{\rm U,\hspace{0.15cm} SE }  =  {\rm Q}\left( {g_0}/{\sigma_d} \right)=  {\rm
 
  Q}(5) \approx 2.87 \cdot 10^{-7}\hspace{0.05cm}.$$
 
  Q}(5) \approx 2.87 \cdot 10^{-7}\hspace{0.05cm}.$$
  
Bei den anderen hier betrachteten Systemvarianten <b>B</b>, <b>C</b> und <b>D</b> sind die Impulsinterferenzen so stark und der vorgegebene Störeffektivwert so klein, dass die folgende Näherung angewendet werden kann:
+
For the other system variants &nbsp; $\rm B$,&nbsp; $\rm C$&nbsp; and&nbsp; $\rm D$&nbsp; considered here, the intersymbol interferences are so strong and the given noise rms value is so small that the following approximation can be applied:
:$$p_{\rm SE }  \approx {1}/{4} \cdot p_{\rm U,\hspace{0.05cm} SE }
+
:$$p_{\rm SE }  \approx {1}/{4} \cdot p_{\rm U,\hspace{0.1cm} SE }
  =  {1}/{4} \cdot {\rm Q}\left( \frac {{\rm Max }\hspace{0.05cm}[0, \hspace{0.05cm}g_0-|g_{-1}|-|g_{1}|]}{\sigma_d} \right)\hspace{0.05cm}.$$
+
  =  {1}/{4} \cdot {\rm Q}\left( \frac {{\rm Max }\hspace{0.05cm}\big [0, \hspace{0.05cm}g_0-|g_{-1}|-|g_{1}|\big ]}{\sigma_d} \right)\hspace{0.05cm}.$$
  
Mit Ausnahme des Nyquistsystems <b>A</b> (hier ist $p_{\rm DFE} = p_{\rm SE}$) gilt für den DFE&ndash;Empfänger statt dessen:
+
Except for the Nyquist system&nbsp; $\rm A$&nbsp; $($here &nbsp;$p_{\rm DFE} = p_{\rm SE})$,&nbsp; the following approximation applies to the DFE receiver instead:
:$$p_{\rm DFE }  \approx {1}/{2} \cdot p_{\rm U,\hspace{0.05cm} DFE }
+
:$$p_{\rm DFE }  \approx {1}/{2} \cdot p_{\rm U,\hspace{0.1cm} DFE }
  =  {1}/{2} \cdot {\rm Q}\left( \frac{{\rm Max }\hspace{0.05cm}[0, \hspace{0.05cm}g_0-|g_{-1}|]}{\sigma_d} \right)\hspace{0.05cm}.$$
+
  =  {1}/{2} \cdot {\rm Q}\left( \frac{{\rm Max }\hspace{0.05cm}\big [0, \hspace{0.05cm}g_0-|g_{-1}|\big ]}{\sigma_d} \right)\hspace{0.05cm}.$$
  
Dagegen wurde auf der [[Digitalsignal%C3%BCbertragung/Viterbi%E2%80%93Empf%C3%A4nger#Fehlerwahrscheinlichkeit_bei_Maximum.E2.80.93Likelihood.E2.80.93Entscheidung| letzten Theorieseite]] zu diesem Kapitel gezeigt, dass für einen Empfänger mit ML&ndash;Entscheidung folgende Näherung zutrifft:
+
In contrast,&nbsp; it was shown in the&nbsp; [[Digital_Signal_Transmission/Viterbi_Receiver#Bit_error_probability_with_maximum_likelihood_decision|"last theory section"]]&nbsp; for this chapter that for a receiver with ML decision, the following approximation holds:
 
:$$p_{\rm ML }
 
:$$p_{\rm ML }
 
  =  {\rm Q}\left( \frac{{\rm Max }\hspace{0.05cm}[g_{\nu}]}{\sigma_d} \right)\hspace{0.05cm}.$$
 
  =  {\rm Q}\left( \frac{{\rm Max }\hspace{0.05cm}[g_{\nu}]}{\sigma_d} \right)\hspace{0.05cm}.$$
  
''Hinweise:''
+
 
* Die Aufgabe bezieht sich auf das Kapitel [[Digitalsignal%C3%BCbertragung/Viterbi%E2%80%93Empf%C3%A4nger| Viterbi&ndash;Empfänger]].
+
 
* Die Zahlenwerte der Q&ndash;Funktion können Sie mit dem Interaktionsmodul [https://intern.lntwww.de/cgi-bin/extern/uni.pl?uno=hyperlink&due=block&b_id=1706&hyperlink_typ=block_verweis&hyperlink_fenstergroesse=blockverweis_gross| Komplementäre Gaußsche Fehlerfunktionen] ermitteln.
+
Notes:  
* Um den im Theorieteil angegebenen Algorithmus für zwei Vorläufer anwenden zu können, müssten Sie folgende Umbenennungen vornehmen:
+
*The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Viterbi_Receiver|"Viterbi Receiver"]].
 +
 
 +
*Reference is also made to the chapters&nbsp; [[Digital_Signal_Transmission/Linear_Nyquist_Equalization|"Linear Nyquist Equalization"]]&nbsp; and&nbsp;  [[Digital_Signal_Transmission/Decision_Feedback|"Decision Feedback"]].
 +
 +
* You can determine the numerical values of the Q-function using the interaction module&nbsp; [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Complementary Gaussian Error Functions"]].&nbsp;
 +
 +
* To apply the algorithm given in the theory section for two precursors,&nbsp; you would have to make the following renamings&nbsp; <br>$($which,&nbsp; however,&nbsp; has no meaning for the calculation of the error probabilities$)$:
 
:$$g_{1 }\hspace{0.1cm}\Rightarrow \hspace{0.1cm}g_{0 },\hspace{0.4cm}
 
:$$g_{1 }\hspace{0.1cm}\Rightarrow \hspace{0.1cm}g_{0 },\hspace{0.4cm}
 
  g_{0 }\hspace{0.1cm}\Rightarrow \hspace{0.1cm}g_{-1 },\hspace{0.4cm}
 
  g_{0 }\hspace{0.1cm}\Rightarrow \hspace{0.1cm}g_{-1 },\hspace{0.4cm}
Line 44: Line 56:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Dies hat jedoch für die Berechnung der Fehlerwahrscheinlichkeiten keine Bedeutung.
 
  
 
+
===Questions===
===Fragebogen===
 
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Fehlerwahrscheinlichkeit ergibt sich bei System <b>A</b> mit ML&ndash;Detektion?
+
{What is the error probability for system &nbsp;$\rm A$&nbsp; with maximum likelihood detection&nbsp; $\rm (ML)$?
 
|type="{}"}
 
|type="{}"}
${\rm System \ A} \text{:} \hspace{0.2cm} p_{\rm ML} $ = { 2.87 3% } $\ \cdot 10^{\rm &ndash;7} $
+
$\hspace{0.2cm} p_{\rm ML} \ = \ $ { 2.87 3% } $\ \cdot 10^{\rm &ndash;7} $
  
{Welche Fehlerwahrscheinlichkeiten sind bei System <b>B</b> zu erwarten?
+
{What error probabilities are to be expected with system &nbsp;$\rm B$?&nbsp;
 
|type="{}"}
 
|type="{}"}
${\rm System \ B} \text{:} \hspace{0.2cm} p_{\rm SE} $ = { 4 3% } $\ \cdot 10^{\rm &ndash;2} $
+
$\hspace{0.25cm} p_{\rm SE} \ = \ $ { 4 3% } $\ \% $
${\rm System \ B} \text{:} \hspace{0.2cm} p_{\rm DFE} $ = { 3.1 3% } $\ \cdot 10^{\rm &ndash;3} $
+
$p_{\rm DFE} \ = \ $ { 0.31 3% } $\ \% $
${\rm System \ B} \text{:} \hspace{0.2cm} p_{\rm ML} $ = { 1.35 3% } $\ \cdot 10^{\rm &ndash;3} $
+
$\hspace{0.2cm} p_{\rm ML} \ = \ $ { 0.135 3% } $\ \% $
  
{Welche Fehlerwahrscheinlichkeiten ergeben sich bei System <b>C</b>?
+
{What are the error probabilities for system &nbsp;$\rm C$?
 
|type="{}"}
 
|type="{}"}
${\rm System \ C} \text{:} \hspace{0.2cm} p_{\rm SE} $ = { 0.125 3% } $\ \cdot 10^{\rm 0} $
+
$\hspace{0.25cm} p_{\rm SE} \ = \ $ { 12.5 3% } $\ \% $
${\rm System \ C} \text{:} \hspace{0.2cm} p_{\rm DFE} $ = { 0.15 3% } $\ \cdot 10^{\rm 0} $
+
$p_{\rm DFE} \ = \ $ { 15.0 3% } $\ \% $
${\rm System \ C} \text{:} \hspace{0.2cm} p_{\rm ML} $ = { 2.27 3% } $\ \cdot 10^{\rm &ndash;2} $
+
$\hspace{0.2cm} p_{\rm ML} \ = \ $ { 2.27 3% } $\ \% $
  
{Welche Fehlerwahrscheinlichkeiten sind bei System <b>D</b> zu erwarten?
+
{What error probabilities are to be expected with system &nbsp;$\rm D$?&nbsp;
 
|type="{}"}
 
|type="{}"}
${\rm System \ D} \text{:} \hspace{0.2cm} p_{\rm SE} $ = { 0.255 3% } $\ \cdot 10^{\rm 0} $
+
$\hspace{0.25cm} p_{\rm SE} \ = \ $ { 25.0 3% } $\ \% $
${\rm System \ D} \text{:} \hspace{0.2cm} p_{\rm DFE} $ = { 0.35 3% } $\ \cdot 10^{\rm 0} $
+
$p_{\rm DFE} \ = \ $ { 35.0 3% } $\ \% $
${\rm System \ D} \text{:} \hspace{0.2cm} p_{\rm ML} $ = { 2.27 3% } $\ \cdot 10^{\rm &ndash;2} $
+
$\hspace{0.2cm} p_{\rm ML} \ = \ $ { 2.27 3% } $\ \% $
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Ohne Impulsinterferenzen bringen der DFE&ndash; und der ML&ndash;Empfänger keine Verbesserung gegenüber der einfachen Schwellenwertentscheidung:
+
'''(1)'''&nbsp; Without intersymbol interference&nbsp; $\text{(system A)}$,&nbsp; the DFE and ML receivers do not improve over the simple threshold decision:
 
:$$  p_{\rm DFE } = p_{\rm ML } = p_{\rm SE }  \hspace{0.15cm}\underline {\approx  2.87 \cdot 10^{-7}}
 
:$$  p_{\rm DFE } = p_{\rm ML } = p_{\rm SE }  \hspace{0.15cm}\underline {\approx  2.87 \cdot 10^{-7}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Mit $g_0 = 0.6$, $g_{\rm &ndash;1} = 0.1$ und $g_1 = 0.3$ erhält man näherungsweise:
+
'''(2)'''&nbsp; With&nbsp; $g_0 = 0.6$,&nbsp; $g_{\rm &ndash;1} = 0.1$&nbsp; and&nbsp; $g_1 = 0.3$,&nbsp; $\text{(system B)}$,&nbsp; one obtains approximately:
:$$p_{\rm SE } \ \approx \ {1}/{4} \cdot {\rm Q}\left( \frac{0.6-0.1-0.3}{0.2} \right)= {1}/{4} \cdot{\rm Q}(1) \hspace{0.15cm}\underline {\approx 0.04
+
:$$p_{\rm SE } \ \approx \ {1}/{4} \cdot {\rm Q}\left( \frac{0.6-0.1-0.3}{0.2} \right)= {1}/{4} \cdot{\rm Q}(1) \hspace{0.15cm}\underline {\approx 4\%
 
  \hspace{0.05cm}},$$
 
  \hspace{0.05cm}},$$
 
:$$ p_{\rm DFE } \ \approx \ {1}/{2} \cdot {\rm Q}\left( \frac{0.6-0.1}{0.2} \right)= {1}/{2} \cdot {\rm Q}(2.5) \hspace{0.15cm}\underline {\approx
 
:$$ p_{\rm DFE } \ \approx \ {1}/{2} \cdot {\rm Q}\left( \frac{0.6-0.1}{0.2} \right)= {1}/{2} \cdot {\rm Q}(2.5) \hspace{0.15cm}\underline {\approx
3.1 \cdot 10^{-3}} \hspace{0.05cm},$$
+
0.31\%} \hspace{0.05cm},$$
:$$ p_{\rm ML } \ \approx \ {\rm Q}\left( \frac{0.6}{0.2} \right) = {\rm Q}(3) \hspace{0.15cm}\underline {\approx 1.35 \cdot 10^{-3}}
+
:$$ p_{\rm ML } \ \approx \ {\rm Q}\left( \frac{0.6}{0.2} \right) = {\rm Q}(3) \hspace{0.15cm}\underline {\approx 0.135\%}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Die Fehlerwahrscheinlichkeiten lauten mit $g_0 = 0.4$ und $g_1 = g_{\rm &ndash;1} = 0.3$:
+
'''(3)'''&nbsp; With&nbsp; $g_0 = 0.4$&nbsp; and&nbsp; $g_1 = g_{\rm &ndash;1} = 0.3$&nbsp; $\text{(system C)}$,&nbsp; one obtains approximately:
:$$p_{\rm SE } \ \approx \ {1}/{4} \cdot{\rm Q}(0) \hspace{0.15cm}\underline {= 0.125} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm geschlossenes }\hspace{0.15cm}{\rm Auge }
+
:$$p_{\rm SE } \ \approx \ {1}/{4} \cdot{\rm Q}(0) \hspace{0.15cm}\underline {= 12.5\%} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm closed }\hspace{0.15cm}{\rm eye }
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
 
:$$ p_{\rm DFE } \ \approx \ {1}/{2} \cdot {\rm Q}\left( \frac{0.4-0.3}{0.2} \right)= {1}/{2} \cdot {\rm Q}(0.5) \hspace{0.15cm}\underline {\approx
 
:$$ p_{\rm DFE } \ \approx \ {1}/{2} \cdot {\rm Q}\left( \frac{0.4-0.3}{0.2} \right)= {1}/{2} \cdot {\rm Q}(0.5) \hspace{0.15cm}\underline {\approx
  0.15 \hspace{0.05cm}},$$
+
  15\% \hspace{0.05cm}},$$
 
:$$ p_{\rm ML } \ \approx \ {\rm Q}\left( \frac{0.4}{0.2} \right) = {\rm Q}(2) \hspace{0.15cm}\underline {\approx
 
:$$ p_{\rm ML } \ \approx \ {\rm Q}\left( \frac{0.4}{0.2} \right) = {\rm Q}(2) \hspace{0.15cm}\underline {\approx
  0.0227}
+
  2.27\%}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Interessant &ndash; und nicht etwa ein Rechenfehler &ndash; ist, dass die DFE schlechter ist als der herkömmliche Schwellenwertentscheider, wenn die Fehlerwahrscheinlichkeit $10\%$ oder mehr beträgt (siehe dazu auch die Musterlösung zur Teilaufgabe (4)).
+
*Interesting is &ndash; and not a calculation error &ndash; that the DFE is worse than the conventional threshold decision when the error probability is&nbsp; $10\%$&nbsp; or more.
 +
*See also the solution for subtask&nbsp; '''(4)'''.
  
  
'''(4)'''&nbsp; Nun ergibt sich auch für den DFE&ndash;Empfänger ein geschlossenes Auge. Die Fehlerwahrscheinlichkeit $p_{\rm DFE}$ ist größer als $p_{\rm SE}$, da nun die ungünstigste Symbolfolge häufiger auftritt. Nach der angegebenen einfachen Näherung gilt:
+
'''(4)'''&nbsp; With system $\text{D}$,&nbsp; the DFE receiver also has a closed eye.
 +
*$p_{\rm DFE}$&nbsp; is greater than&nbsp; $p_{\rm SE}$,&nbsp; since the worst-case symbol sequence now occurs more frequently.&nbsp; According to the given simple approximation holds:
 
:$$p_{\rm SE } = {1}/{4} \cdot{\rm Q}(0) = 0.125\hspace{0.05cm}, \hspace{0.2cm}
 
:$$p_{\rm SE } = {1}/{4} \cdot{\rm Q}(0) = 0.125\hspace{0.05cm}, \hspace{0.2cm}
 
  p_{\rm DFE } = {1}/{2} \cdot{\rm Q}(0) \hspace{0.15cm}\underline {= 0.250}
 
  p_{\rm DFE } = {1}/{2} \cdot{\rm Q}(0) \hspace{0.15cm}\underline {= 0.250}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Bei exakter Rechnung erhält man dagegen:
+
*On the other hand,&nbsp; with an exact calculation one obtains:
 
:$$p_{\rm SE } \ = \ {1}/{4} \cdot  {\rm Q}\left( \frac{0.3-0.4-0.3}{0.2}\right)
 
:$$p_{\rm SE } \ = \ {1}/{4} \cdot  {\rm Q}\left( \frac{0.3-0.4-0.3}{0.2}\right)
  + {1}/{4} \cdot{\rm Q}\left( \frac{0.3-0.4+0.3}{0.2}\right)+$$
+
  + {1}/{4} \cdot{\rm Q}\left( \frac{0.3-0.4+0.3}{0.2}\right)+ \ {1}/{4} \cdot {\rm Q}\left( \frac{0.3+0.4-0.3}{0.2}\right)
:$$ \ + \ {1}/{4} \cdot {\rm Q}\left( \frac{0.3+0.4-0.3}{0.2}\right)
+
  +{1}/{4} \cdot{\rm Q}\left( \frac{0.3+0.4+0.3}{0.2}\right)$$
  +{1}/{4} \cdot{\rm Q}\left( \frac{0.3+0.4+0.3}{0.2}\right)= $$
+
:$$ \Rightarrow \hspace{0.3cm}p_{\rm SE } \ = \ {1}/{4} \cdot \left[ {\rm Q}(-2) + {\rm Q}(1) +{\rm Q}(2) +{\rm Q}(5) \right]
:$$ \ = \ {1}/{4} \cdot \left[ {\rm Q}(-2) + {\rm Q}(1) +{\rm Q}(2) +{\rm Q}(5) \right]
 
 
={1}/{4} \cdot \left[ 1+ {\rm Q}(1)  +{\rm Q}(5) \right]
 
={1}/{4} \cdot \left[ 1+ {\rm Q}(1)  +{\rm Q}(5) \right]
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Wegen ${\rm Q}(&ndash;2) + {\rm Q}(2) = 1$ und ${\rm Q}(5) \approx 0$ erhält man daraus $p_{\rm SE} \approx 25.5\%$.
+
*Because of&nbsp; ${\rm Q}(&ndash;2) + {\rm Q}(2) = 1$&nbsp; and&nbsp; ${\rm Q}(5) \approx 0$&nbsp; we obtain&nbsp; $p_{\rm SE} \approx 25.5\%$.
  
Entsprechend gilt für den DFE&ndash;Empfänger:
+
*The same applies to the DFE receiver:
 
:$$p_{\rm DFE } \ = \ {1}/{2} \cdot  {\rm Q}\left( \frac{0.3-0.4}{0.2}\right)
 
:$$p_{\rm DFE } \ = \ {1}/{2} \cdot  {\rm Q}\left( \frac{0.3-0.4}{0.2}\right)
  + {1}/{2} \cdot{\rm Q}\left( \frac{0.3+0.4}{0.2}\right)=$$
+
  + {1}/{2} \cdot{\rm Q}\left( \frac{0.3+0.4}{0.2}\right)= \ {1}/{2} \cdot \left[ {\rm Q}(-0.5) + {\rm Q}(3.5)
:$$\ = \ {1}/{2} \cdot \left[ {\rm Q}(-0.5) + {\rm Q}(3.5)
+
  \right] \approx\frac{1- {\rm Q}(0.5)}{2}\hspace{0.15cm}\underline {= 35\%}
  \right] \approx\frac{1- {\rm Q}(0.5)}{2}\hspace{0.15cm}\underline {= 0.35}
 
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Dagegen beträgt die Fehlerwahrscheinlichkeit $p_{\rm ML}$ eines Maximum&ndash;Likelihood&ndash;Empfängers weiterhin ${\rm Q}(2) \hspace{0.15cm} \underline {= 2.27\%}$. Die Reihenfolge der Detektionsgrundimpulswerte ist für die Fehlerwahrscheinlichkeit des Viterbi&ndash;Empfängers (nahezu) nicht von Bedeutung.
+
*In contrast,&nbsp; the error probability&nbsp; $p_{\rm ML}$&nbsp; of a maximum likelihood receiver is still&nbsp; ${\rm Q}(2) \hspace{0.15cm} \underline {= 2.27\%}$.  
 +
 
 +
*The order of the basic detection pulse values is&nbsp; (almost)&nbsp; irrelevant for the error probability of the Viterbi receiver.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^3.8 Viterbi-Empfänger^]]
+
[[Category:Digital Signal Transmission: Exercises|^3.8 Viterbi Receiver^]]

Latest revision as of 13:21, 13 July 2022

Bitte diese Aufgabe sehr genau kontrollieren. Da habe ich etliche Änderungen vorgenommen.

Error probabilities in comparison:
$\bullet$   Threshold Decision  $\rm (SE)$,
$\bullet$   Decision Feedback Equalization  $\text{(DFE)}$,
$\bullet$   Maximum Likelihood Detection   $\text{(ML)}$

Error probabilities of different receiver types are to be compared.  Considered are:

  • Threshold Decision  $($German:  "Schwellenwertentscheidung"   ⇒   "$\rm SE$"$)$   ⇒   error probability  $p_{\rm SE}$,
  • Decision Feedback Equalization  $\rm (DFE)$   ⇒   error probability  $p_{\rm DFE}$ and
  • Maximum Likelihood Detection  $\rm (ML)$     ⇒   error probability  $p_{\rm ML}$.


In the table given are four different parameter sets   $\rm A$,  $\rm B$,  $\rm C$  and  $\rm D$:

  • The  "main value"  $g_0$  of the basic detection pulse,
  • the  "precursor"  $g_{\rm –1}$,
  • the  "postcursor"  (trailer)  $g_1$,
  • the rms value  $\sigma_d$  of the detection noise component  $d_{\rm N}(t)$  before the respective decision.


Bipolar amplitude coefficients are assumed,  so that,  for example,  for the worst-case error probability  $($German:  "ungünstigste Fehlerwahrscheinlichkeit"   ⇒   "$\rm U$"$)$   of the receiver with threshold decision, the following applies:

$$p_{\rm U,\hspace{0.15cm} SE } = \left\{ \begin{array}{c} {\rm Q}\big [ ({g_0-|g_{-1}|-|g_{1}|})/{\sigma_d} \big ]\\ \\{\rm Q}(0) = 0.5 \end{array} \right.\quad \begin{array}{*{1}c} {\rm with }\hspace{0.15cm}{\rm open }\hspace{0.15cm}{\rm eye }, \\ \\{\rm with }\hspace{0.15cm}{\rm closed }\hspace{0.15cm}{\rm eye }. \\ \end{array}\begin{array}{*{20}c} \\ \end{array}$$

For the Nyquist system  $\rm A$,  the mean error probability is exactly the same, viz.

$$p_{\rm SE } =p_{\rm U,\hspace{0.15cm} SE } = {\rm Q}\left( {g_0}/{\sigma_d} \right)= {\rm Q}(5) \approx 2.87 \cdot 10^{-7}\hspace{0.05cm}.$$

For the other system variants   $\rm B$,  $\rm C$  and  $\rm D$  considered here, the intersymbol interferences are so strong and the given noise rms value is so small that the following approximation can be applied:

$$p_{\rm SE } \approx {1}/{4} \cdot p_{\rm U,\hspace{0.1cm} SE } = {1}/{4} \cdot {\rm Q}\left( \frac {{\rm Max }\hspace{0.05cm}\big [0, \hspace{0.05cm}g_0-|g_{-1}|-|g_{1}|\big ]}{\sigma_d} \right)\hspace{0.05cm}.$$

Except for the Nyquist system  $\rm A$  $($here  $p_{\rm DFE} = p_{\rm SE})$,  the following approximation applies to the DFE receiver instead:

$$p_{\rm DFE } \approx {1}/{2} \cdot p_{\rm U,\hspace{0.1cm} DFE } = {1}/{2} \cdot {\rm Q}\left( \frac{{\rm Max }\hspace{0.05cm}\big [0, \hspace{0.05cm}g_0-|g_{-1}|\big ]}{\sigma_d} \right)\hspace{0.05cm}.$$

In contrast,  it was shown in the  "last theory section"  for this chapter that for a receiver with ML decision, the following approximation holds:

$$p_{\rm ML } = {\rm Q}\left( \frac{{\rm Max }\hspace{0.05cm}[g_{\nu}]}{\sigma_d} \right)\hspace{0.05cm}.$$


Notes:

  • To apply the algorithm given in the theory section for two precursors,  you would have to make the following renamings 
    $($which,  however,  has no meaning for the calculation of the error probabilities$)$:
$$g_{1 }\hspace{0.1cm}\Rightarrow \hspace{0.1cm}g_{0 },\hspace{0.4cm} g_{0 }\hspace{0.1cm}\Rightarrow \hspace{0.1cm}g_{-1 },\hspace{0.4cm} g_{-1 }\hspace{0.1cm}\Rightarrow \hspace{0.1cm}g_{-2 } \hspace{0.05cm}.$$


Questions

1

What is the error probability for system  $\rm A$  with maximum likelihood detection  $\rm (ML)$?

$\hspace{0.2cm} p_{\rm ML} \ = \ $

$\ \cdot 10^{\rm –7} $

2

What error probabilities are to be expected with system  $\rm B$? 

$\hspace{0.25cm} p_{\rm SE} \ = \ $

$\ \% $
$p_{\rm DFE} \ = \ $

$\ \% $
$\hspace{0.2cm} p_{\rm ML} \ = \ $

$\ \% $

3

What are the error probabilities for system  $\rm C$?

$\hspace{0.25cm} p_{\rm SE} \ = \ $

$\ \% $
$p_{\rm DFE} \ = \ $

$\ \% $
$\hspace{0.2cm} p_{\rm ML} \ = \ $

$\ \% $

4

What error probabilities are to be expected with system  $\rm D$? 

$\hspace{0.25cm} p_{\rm SE} \ = \ $

$\ \% $
$p_{\rm DFE} \ = \ $

$\ \% $
$\hspace{0.2cm} p_{\rm ML} \ = \ $

$\ \% $


Solution

(1)  Without intersymbol interference  $\text{(system A)}$,  the DFE and ML receivers do not improve over the simple threshold decision:

$$ p_{\rm DFE } = p_{\rm ML } = p_{\rm SE } \hspace{0.15cm}\underline {\approx 2.87 \cdot 10^{-7}} \hspace{0.05cm}.$$


(2)  With  $g_0 = 0.6$,  $g_{\rm –1} = 0.1$  and  $g_1 = 0.3$,  $\text{(system B)}$,  one obtains approximately:

$$p_{\rm SE } \ \approx \ {1}/{4} \cdot {\rm Q}\left( \frac{0.6-0.1-0.3}{0.2} \right)= {1}/{4} \cdot{\rm Q}(1) \hspace{0.15cm}\underline {\approx 4\% \hspace{0.05cm}},$$
$$ p_{\rm DFE } \ \approx \ {1}/{2} \cdot {\rm Q}\left( \frac{0.6-0.1}{0.2} \right)= {1}/{2} \cdot {\rm Q}(2.5) \hspace{0.15cm}\underline {\approx 0.31\%} \hspace{0.05cm},$$
$$ p_{\rm ML } \ \approx \ {\rm Q}\left( \frac{0.6}{0.2} \right) = {\rm Q}(3) \hspace{0.15cm}\underline {\approx 0.135\%} \hspace{0.05cm}.$$


(3)  With  $g_0 = 0.4$  and  $g_1 = g_{\rm –1} = 0.3$  $\text{(system C)}$,  one obtains approximately:

$$p_{\rm SE } \ \approx \ {1}/{4} \cdot{\rm Q}(0) \hspace{0.15cm}\underline {= 12.5\%} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm closed }\hspace{0.15cm}{\rm eye } \hspace{0.05cm},$$
$$ p_{\rm DFE } \ \approx \ {1}/{2} \cdot {\rm Q}\left( \frac{0.4-0.3}{0.2} \right)= {1}/{2} \cdot {\rm Q}(0.5) \hspace{0.15cm}\underline {\approx 15\% \hspace{0.05cm}},$$
$$ p_{\rm ML } \ \approx \ {\rm Q}\left( \frac{0.4}{0.2} \right) = {\rm Q}(2) \hspace{0.15cm}\underline {\approx 2.27\%} \hspace{0.05cm}.$$
  • Interesting is – and not a calculation error – that the DFE is worse than the conventional threshold decision when the error probability is  $10\%$  or more.
  • See also the solution for subtask  (4).


(4)  With system $\text{D}$,  the DFE receiver also has a closed eye.

  • $p_{\rm DFE}$  is greater than  $p_{\rm SE}$,  since the worst-case symbol sequence now occurs more frequently.  According to the given simple approximation holds:
$$p_{\rm SE } = {1}/{4} \cdot{\rm Q}(0) = 0.125\hspace{0.05cm}, \hspace{0.2cm} p_{\rm DFE } = {1}/{2} \cdot{\rm Q}(0) \hspace{0.15cm}\underline {= 0.250} \hspace{0.05cm}.$$
  • On the other hand,  with an exact calculation one obtains:
$$p_{\rm SE } \ = \ {1}/{4} \cdot {\rm Q}\left( \frac{0.3-0.4-0.3}{0.2}\right) + {1}/{4} \cdot{\rm Q}\left( \frac{0.3-0.4+0.3}{0.2}\right)+ \ {1}/{4} \cdot {\rm Q}\left( \frac{0.3+0.4-0.3}{0.2}\right) +{1}/{4} \cdot{\rm Q}\left( \frac{0.3+0.4+0.3}{0.2}\right)$$
$$ \Rightarrow \hspace{0.3cm}p_{\rm SE } \ = \ {1}/{4} \cdot \left[ {\rm Q}(-2) + {\rm Q}(1) +{\rm Q}(2) +{\rm Q}(5) \right] ={1}/{4} \cdot \left[ 1+ {\rm Q}(1) +{\rm Q}(5) \right] \hspace{0.05cm}.$$
  • Because of  ${\rm Q}(–2) + {\rm Q}(2) = 1$  and  ${\rm Q}(5) \approx 0$  we obtain  $p_{\rm SE} \approx 25.5\%$.
  • The same applies to the DFE receiver:
$$p_{\rm DFE } \ = \ {1}/{2} \cdot {\rm Q}\left( \frac{0.3-0.4}{0.2}\right) + {1}/{2} \cdot{\rm Q}\left( \frac{0.3+0.4}{0.2}\right)= \ {1}/{2} \cdot \left[ {\rm Q}(-0.5) + {\rm Q}(3.5) \right] \approx\frac{1- {\rm Q}(0.5)}{2}\hspace{0.15cm}\underline {= 35\%} \hspace{0.05cm}.$$
  • In contrast,  the error probability  $p_{\rm ML}$  of a maximum likelihood receiver is still  ${\rm Q}(2) \hspace{0.15cm} \underline {= 2.27\%}$.
  • The order of the basic detection pulse values is  (almost)  irrelevant for the error probability of the Viterbi receiver.