Difference between revisions of "Aufgaben:Exercise 3.1: Phase Modulation Locus Curve"

From LNTwww
m
 
(28 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Phasenmodulation (PM)
+
{{quiz-Header|Buchseite=Modulation_Methods/Phase_Modulation_(PM)
 
}}
 
}}
  
[[File:P_ID1079__Mod_A_3_1.png|right|]]
+
[[File:P_ID1079__Mod_A_3_1.png|right|frame|Two locus curves to choose from]]
Die Grafik zeigt Ortskurven am Ausgang zweier Modulatoren $M_1$ und $M_2$. Real- und Imaginärteil sind in dieser Grafik jeweils auf 1 V normiert.
+
The locus curve is generally understood as the plot of the equivalent low-pass signal $s_{\rm TP}(t)$  in the complex plane.
Unter der Ortskurve versteht man allgemein die Darstellung des äquivalenten Tiefpass–Signals $s_{TP}(t)$ in der komplexen Ebene.
+
*The graph shows locus curves at the output of two modulators  $\rm M_1$  and  $\rm M_2$.  
 +
*The real and imaginary parts are each normalized to $1 \ \rm V$ in this graph.
  
  
Das Quellensignal sei bei beiden Modulatoren gleich:
+
Let the source signal be the same for both modulators:
$$ q(t) = A_{\rm N} \cdot \cos(2 \pi f_{\rm N} \cdot t),\hspace{1cm}\\{\rm mit}\hspace{0.2cm} A_{\rm N} = 2\,{\rm V},\hspace{0.2cm}f_{\rm N} = 5\,{\rm kHz}\hspace{0.05cm}.$$
+
$$ q(t) = A_{\rm N} \cdot \cos(2 \pi f_{\rm N} \cdot t),\hspace{1cm}
Einer der beiden Modulatoren realisiert eine Phasenmodulation, die durch folgende Gleichungen gekennzeichnet ist:
+
{\rm with}\hspace{0.2cm} A_{\rm N} = 2\,{\rm V},\hspace{0.2cm}f_{\rm N} = 5\,{\rm kHz}\hspace{0.05cm}.$$
$$ s(t)  =  A_{\rm T} \cdot \cos \left(\omega_{\rm T} \cdot t + \phi(t) \right)\hspace{0.05cm},$$
+
One of the two modulators implements phase modulation, which is characterized by the following equations:
$$ s_{\rm TP}(t)  =  A_{\rm T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\phi(t) }\hspace{0.05cm},$$
+
:$$ s(t)  =  A_{\rm T} \cdot \cos \hspace{-0.1cm} \big[\omega_{\rm T} \cdot t + \phi(t) \big]\hspace{0.05cm},$$
$$ \phi(t)  =  K_{\rm PM} \cdot q(t)\hspace{0.05cm}.$$
+
:$$ s_{\rm TP}(t)  =  A_{\rm T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\phi(t) }\hspace{0.05cm},$$
Den Maximalwert von $ϕ(t)$ nennt man Modulationsindex $η$ – teilweise wird diese Größe in der Literatur auch als Phasenhub bezeichnet.
+
:$$ \phi(t)  =  K_{\rm PM} \cdot q(t)\hspace{0.05cm}.$$
'''Hinweis:''' Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von [http://en.lntwww.de/Modulationsverfahren/Phasenmodulation_(PM) Kapitel 3.1].  
+
The maximum value  $ϕ(t)$  is called the   ''modulation index''  $η$.  Often  $η$  is also called   ''phase deviation''  in the literature.
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*This exercise belongs to the chapter  [[Modulation_Methods/Phase_Modulation_(PM)|Phase Modulation]].
 +
*Particular reference is made to the page   [[Modulation_Methods/Phase_Modulation_(PM)#Equivalent_low-pass_signal_in_phase_modulation|Equivalent low-pass signal in phase modulation]].
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welches Modulationsverfahren verwendet der Modulator $M_1$?
+
{Which modulation method is used by modulator &nbsp;$\rm M_1$?
|type="[]"}
+
|type="()"}
- Zweiseitenband–Amplitudenmodulation.
+
- Double-sideband amplitude modulation.
+ Einseitenband–Amplitudenmodulation.
+
+ Single sideband amplitude modulation.
- Phasenmodulation.
+
- Phase modulation.
  
{Welches Modulationsverfahren verwendet der Modulator $M_2$?
+
{Which modulation method is used by modulator &nbsp;$\rm M_2$?
|type="[]"}
+
|type="()"}
- Zweiseitenband–Amplitudenmodulation.
+
- Double-sideband amplitude modulation.
- Einseitenband–Amplitudenmodulation.
+
- Single sideband amplitude modulation.
+ Phasenmodulation.
+
+ Phase modulation.
  
{Wie groß ist die Trägeramplitude $A_T$ beim Phasenmodulator? Beachten Sie die Normierung auf 1 V.
+
{What is the carrier amplitude &nbsp;$A_{\rm T}$&nbsp; for the phase modulator?&nbsp; Note the normalization to &nbsp;$1 \ \rm V$.
 
|type="{}"}
 
|type="{}"}
$A_T$ = { 1 3% } $V$  
+
$A_{\rm T} \ = \ $ { 1 3% } $\ \rm V$  
  
{Welche Werte besitzen der Modulationsindex und die Modulatorkonstante?
+
{What are the values of the modulation index &nbsp;$η$&nbsp; and the modulator constant &nbsp;$K_{\rm PM}$?
 
|type="{}"}
 
|type="{}"}
$η$ = { 3.1415 3% }  
+
\ = \ $  { 3.1415 3% }  
$K_{PM}$ = { 1.571 3% } $1/V$
+
$K_{\rm PM}\ = \ $ { 1.571 3% } $\ \rm 1/V$
  
{Beschreiben Sie die Bewegung auf der Ortskurve. Zu welcher Zeit $t_1$ wird zum ersten Mal wieder der Ausgangspunkt $s_{TP}(t = 0) = –1V$ erreicht?
+
{Describe the motion on the locus curve. At what time&nbsp;$t_1$&nbsp; is the starting point &nbsp;$s_{\rm TP}(t = 0) = -1 \ \rm V$&nbsp; first reached again?
 
|type="{}"}
 
|type="{}"}
$t_1$ = { 100 3% } $μs$
+
$t_1\ = \ $ { 100 3% } $ \ \rm  &micro; s$
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Es handelt sich um eine ESB–AM mit dem Seitenband–zu–Träger–Verhältnis $μ = 1$ ⇒ Antwort 2. Bewegt man sich auf dem Kreis in mathematisch positive Richtung, so liegt speziell eine OSB–AM vor, andernfalls eine USB–AM.
+
'''(1)'''&nbsp; We are dealing with SSB-AM with a sideband-to-carrier ratio $μ = 1$ &nbsp; &nbsp; <u>Answer 2</u>:
 +
*If one moves in the mathematically positive direction on the circle, it is specifically an USB–AM, otherwise it is a LSB–AM.
 +
*The phase function&nbsp; $ϕ(t)$&nbsp; as the angle of a point&nbsp; $s_{\rm TP}(t)$&nbsp; on the circle (arc) with respect to the coordinate origin can take values between&nbsp; $±π/2$&nbsp; and does not show a cosine progression.
 +
*The envelope &nbsp; $a(t) = |s_{\rm TP}(t)|$&nbsp; is also not cosine.
 +
*If an envelope demodulator were used for&nbsp; $\rm M_1$&nbsp; at the receiver, nonlinear distortions would occur, in contrast to DSB–AM, which has a horizontal straight line for a locus curve.
 +
 
  
Die Phasenfunktion $ϕ(t)$ als der Winkel eines Punktes $s_{TP}(t)$ auf dem Kreis(bogen) bezogen auf den Koordinatenursprung kann Werte zwischen $±π/2$ annehmen und zeigt keinen Cosinusverlauf. Aber auch die Hüllkurve $a(t) = |s_{TP}(t)|$ ist nicht cosinusförmig. Würde man beim Empfänger für M1 einen Hüllkurvendemodulator einsetzen, so käme es zu nichtlinearen Verzerrungen im Gegensatz zur ZSB–AM, deren Ortskurve eine horizontale Gerade ist.
 
  
  
'''2.'''Hier handelt es sich um die Phasenmodulation Antwort 3. Die Einhüllende $a(t) = A_T$ ist konstant, während die Phase $ϕ(t)$ entsprechend dem Quellensignal cosinusförmig verläuft.
+
'''(2)'''&nbsp; Here, we observe phase modulation  &nbsp; &nbsp; <u>Answer 3</u>:
 +
*The envelope &nbsp; $a(t) = A_{\rm T}$&nbsp; is constant,  
 +
*while the phase&nbsp; $ϕ(t)$&nbsp; is cosinusoidal according to the source signal&nbsp; $q(t)$&nbsp;.
  
'''3.''' Bei der Phasenmodulation gilt
 
$$s_{\rm TP}(t) = A_{\rm T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\phi(t) }\hspace{0.05cm}.$$
 
Aus der Grafik kann man die Trägeramplitude $A_T = 1 V$ als den Kreisradius ablesen.
 
  
  
'''4.'''Das Quellensignal $q(t)$ ist zum Zeitpunkt $t = 0$ maximal und damit auch die Phasenfunktion:
+
 
$$ \eta = \phi_{\rm max} = \phi( t =0)\hspace{0.15cm}\underline { = \pi} \hspace{0.05cm}.$$
+
'''(3)'''&nbsp; In the case of phase modulation:
Daraus erhält man für die Modulatorkonstante:
+
:$$s_{\rm TP}(t) = A_{\rm T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\phi(t) }\hspace{0.05cm}.$$
 +
*From the graph, we can read the carrier amplitude &nbsp; $A_{\rm T}\hspace{0.15cm}\underline{ = 1 \ \rm V}$&nbsp; as the radius of the circle.
 +
 
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; The source signal&nbsp; $q(t)$&nbsp; is at its maximum at time&nbsp; $t = 0$&nbsp; and therefore so is the phase function:
 +
:$$ \eta = \phi_{\rm max} = \phi( t =0) = \pi\hspace{0.15cm}\underline { = 3.1415} \hspace{0.05cm}.$$
 +
*This gives the modulator constant:
 
$$K_{\rm PM} = \frac{\eta}{A_{\rm N}} = \frac{\pi}{2\,{\rm V}}\hspace{0.15cm}\underline {= 1.571\,{\rm V}^{-1}}\hspace{0.05cm}.$$
 
$$K_{\rm PM} = \frac{\eta}{A_{\rm N}} = \frac{\pi}{2\,{\rm V}}\hspace{0.15cm}\underline {= 1.571\,{\rm V}^{-1}}\hspace{0.05cm}.$$
  
'''5.'''Man bewegt sich auf dem Kreis(bogen) im Uhrzeigersinn. Nach einem Viertel der Periodendauer $T_N = 1/f_N = 200 μs$ ist $ϕ(t) = 0$ und $s_{TP}(t) = 1 V$. Zur Zeit $t_1 = T_N/2 = 100 μs$ gilt $ϕ(t_1) = –π$ und $s_{TP}(t_1) = –1 V$. Danach bewegt man sich auf dem Kreisbogen entgegen dem Uhrzeigersinn.
+
 
 +
 
 +
 
 +
'''(5)'''&nbsp; One moves clockwise along the circular arc.  
 +
*After a quarter of the period &nbsp;$T_{\rm N} = 1/f_{\rm N}  = 200 \ \rm &micro; s$&nbsp;, &nbsp;$ϕ(t) = 0$&nbsp; and &nbsp;$s_{\rm TP}(t) = 1 \, \rm V$.  
 +
*At time &nbsp;$t_1 = T_{\rm N}/2\hspace{0.15cm}\underline { = 100 \ \rm &micro; s}$&nbsp;, &nbsp;$ϕ(t_1) = $&nbsp; and &nbsp;$s_{\rm TP}(t_1) = -1 \, \rm V$.  
 +
*Afterwards, one moves counterclockwise along the arc.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 73: Line 104:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^3.1 Phasenmodulation (PM)^]]
+
[[Category:Modulation Methods: Exercises|^3.1 Phase Modulation^]]

Latest revision as of 16:54, 9 April 2022

Two locus curves to choose from

The locus curve is generally understood as the plot of the equivalent low-pass signal $s_{\rm TP}(t)$  in the complex plane.

  • The graph shows locus curves at the output of two modulators  $\rm M_1$  and  $\rm M_2$.
  • The real and imaginary parts are each normalized to $1 \ \rm V$ in this graph.


Let the source signal be the same for both modulators: $$ q(t) = A_{\rm N} \cdot \cos(2 \pi f_{\rm N} \cdot t),\hspace{1cm} {\rm with}\hspace{0.2cm} A_{\rm N} = 2\,{\rm V},\hspace{0.2cm}f_{\rm N} = 5\,{\rm kHz}\hspace{0.05cm}.$$ One of the two modulators implements phase modulation, which is characterized by the following equations:

$$ s(t) = A_{\rm T} \cdot \cos \hspace{-0.1cm} \big[\omega_{\rm T} \cdot t + \phi(t) \big]\hspace{0.05cm},$$
$$ s_{\rm TP}(t) = A_{\rm T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\phi(t) }\hspace{0.05cm},$$
$$ \phi(t) = K_{\rm PM} \cdot q(t)\hspace{0.05cm}.$$

The maximum value  $ϕ(t)$  is called the   modulation index  $η$.  Often  $η$  is also called   phase deviation  in the literature.





Hints:


Questions

1

Which modulation method is used by modulator  $\rm M_1$?

Double-sideband amplitude modulation.
Single sideband amplitude modulation.
Phase modulation.

2

Which modulation method is used by modulator  $\rm M_2$?

Double-sideband amplitude modulation.
Single sideband amplitude modulation.
Phase modulation.

3

What is the carrier amplitude  $A_{\rm T}$  for the phase modulator?  Note the normalization to  $1 \ \rm V$.

$A_{\rm T} \ = \ $

$\ \rm V$

4

What are the values of the modulation index  $η$  and the modulator constant  $K_{\rm PM}$?

$η\ = \ $

$K_{\rm PM}\ = \ $

$\ \rm 1/V$

5

Describe the motion on the locus curve. At what time $t_1$  is the starting point  $s_{\rm TP}(t = 0) = -1 \ \rm V$  first reached again?

$t_1\ = \ $

$ \ \rm µ s$


Solution

(1)  We are dealing with SSB-AM with a sideband-to-carrier ratio $μ = 1$   ⇒   Answer 2:

  • If one moves in the mathematically positive direction on the circle, it is specifically an USB–AM, otherwise it is a LSB–AM.
  • The phase function  $ϕ(t)$  as the angle of a point  $s_{\rm TP}(t)$  on the circle (arc) with respect to the coordinate origin can take values between  $±π/2$  and does not show a cosine progression.
  • The envelope   $a(t) = |s_{\rm TP}(t)|$  is also not cosine.
  • If an envelope demodulator were used for  $\rm M_1$  at the receiver, nonlinear distortions would occur, in contrast to DSB–AM, which has a horizontal straight line for a locus curve.



(2)  Here, we observe phase modulation   ⇒   Answer 3:

  • The envelope   $a(t) = A_{\rm T}$  is constant,
  • while the phase  $ϕ(t)$  is cosinusoidal according to the source signal  $q(t)$ .



(3)  In the case of phase modulation:

$$s_{\rm TP}(t) = A_{\rm T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\phi(t) }\hspace{0.05cm}.$$
  • From the graph, we can read the carrier amplitude   $A_{\rm T}\hspace{0.15cm}\underline{ = 1 \ \rm V}$  as the radius of the circle.



(4)  The source signal  $q(t)$  is at its maximum at time  $t = 0$  and therefore so is the phase function:

$$ \eta = \phi_{\rm max} = \phi( t =0) = \pi\hspace{0.15cm}\underline { = 3.1415} \hspace{0.05cm}.$$
  • This gives the modulator constant:

$$K_{\rm PM} = \frac{\eta}{A_{\rm N}} = \frac{\pi}{2\,{\rm V}}\hspace{0.15cm}\underline {= 1.571\,{\rm V}^{-1}}\hspace{0.05cm}.$$



(5)  One moves clockwise along the circular arc.

  • After a quarter of the period  $T_{\rm N} = 1/f_{\rm N} = 200 \ \rm µ s$ ,  $ϕ(t) = 0$  and  $s_{\rm TP}(t) = 1 \, \rm V$.
  • At time  $t_1 = T_{\rm N}/2\hspace{0.15cm}\underline { = 100 \ \rm µ s}$ ,  $ϕ(t_1) = -π$  and  $s_{\rm TP}(t_1) = -1 \, \rm V$.
  • Afterwards, one moves counterclockwise along the arc.