Difference between revisions of "Aufgaben:Exercise 3.1Z: Influence of the Message Phase in Phase Modulation"

From LNTwww
m
m
Line 12: Line 12:
 
*The frequency  $f_{\rm N}$  of this sinusoidal source signal as well as the carrier frequency  $f_{\rm T}$  can be determined from the signal section of duration  $200 \ \rm  µ s$  represented here.
 
*The frequency  $f_{\rm N}$  of this sinusoidal source signal as well as the carrier frequency  $f_{\rm T}$  can be determined from the signal section of duration  $200 \ \rm  µ s$  represented here.
  
*Das Signal  $s_2(t)$  unterscheidet sich von  $s_1(t)$  möglicherweise durch eine andere Nachrichtenphase  $ϕ_{\rm N}$  und einen anderen Modulationsindex  $η$.  Alle anderen Systemparameter sind gegenüber  $s_1(t)$  unverändert.
+
*The signal  $s_2(t)$  possibly differs from  $s_1(t)$  due to a different message phase  $ϕ_{\rm N}$  and modulation index  $η$.  All other system parameters are unchanged from  $s_1(t)$ .
  
  
Line 21: Line 21:
  
  
''Hinweise:''  
+
''Hints:''  
*Die Aufgabe gehört zum  Kapitel  [[Modulation_Methods/Phasenmodulation_(PM)|Phasenmodulation]].
+
*This exercise belongs to the chapter  [[Modulation_Methods/Phase_Modulation_(PM)|Phase Modulation]].
*Bezug genommen wird insbesondere auf die Seite   [[Modulation_Methods/Phasenmodulation_(PM)#Signalverl.C3.A4ufe_bei_Phasenmodulation|Signalverläufe bei Phasenmodulation]].
+
*Particular reference is made to the page  [[Modulation_Methods/Phase_Modulation_(PM)#Signal_characteristics_of_phase_modulation|Signal characteristics of phase modulation]].
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>

Revision as of 15:06, 14 March 2022


Two PM signal waveforms

We will now consider the phase modulation of diverse oscillations

$$ q(t) = \cos(\omega_{\rm N} \cdot t + \phi_{\rm N})\hspace{0.05cm}.$$

The source signal is represented here in normalized form with $($amplitude  $1)$ , so that the phase-modulated signal can be characterised by the modulation index (or phase deviation)  $η$  as follows:

$$s(t) = A_{\rm T} \cdot \cos \hspace{-0.1cm}\big[\omega_{\rm T} \cdot t + \eta \cdot q(t) \big]\hspace{0.05cm}.$$
  • The signal  $s_1(t)$  shown in the upper graph is characterized by the paramet values  $ϕ_{\rm N} = -90^\circ$  und  $η_1 = 2$ .
  • The frequency  $f_{\rm N}$  of this sinusoidal source signal as well as the carrier frequency  $f_{\rm T}$  can be determined from the signal section of duration  $200 \ \rm µ s$  represented here.
  • The signal  $s_2(t)$  possibly differs from  $s_1(t)$  due to a different message phase  $ϕ_{\rm N}$  and modulation index  $η$.  All other system parameters are unchanged from  $s_1(t)$ .





Hints:


Questions

1

Ermitteln Sie die Frequenz  $f_{\rm N}$  des Nachrichtensignals.

$f_{\rm N} \ = \ $

$\ \rm kHz$

2

Wie groß ist die Trägerfrequenz  $f_{\rm T}$?

$f_{\rm T} \ = \ $

$\ \rm kHz$

3

Wie groß ist die maximale Phasenabweichung  $ϕ_{\rm max}$  zwischen  $z(t)$  und  $s(t)$?

$ϕ_{\rm max} \ = \ $

$\ \rm rad$

4

Zu welcher maximalen Zeitverschiebung der Nulldurchgänge führt diese Phase?

$Δt_{\rm max} \ = \ $

$\ \rm µ s$

5

Bestimmen Sie den Modulationsindex  $η_2$  für das Signal  $s_2(t)$.

$η_2 \ = \ $

6

Welche Phasenlage  $ϕ_{\rm N2}$  hat das für  $s_2(t)$  zugrunde liegende Quellensignal  $q(t)$?

$ϕ_{\rm N2} \ = \ $

$\ \rm Grad$


Musterlösung

(1)  Man erkennt aus der Skizze, dass der dargestellte Signalausschnitt der Dauer  $200 \ \rm µ s$  genau der Periodendauer des sinusförmigen Quellensignals entsprechen muss.  Daraus folgt  $f_{\rm N}\hspace{0.15cm}\underline{ = 5 \ \rm kHz}$.

  • Zu den Zeitpunkten  $t = 0$,  $t = 100 \ \rm µ s$  und  $t = 200 \ \rm µ s$  sind die Signale  $z(t)$  und  $s(t)$  phasensynchron.
  • In der ersten Halbwelle von  $q(t)$  kommen die Nulldurchgänge von  $s(t)$  etwas früher als die des Trägersignals  $z(t)$   ⇒   positive Phase.
  • Dagegen ist im Bereich von  $t = 100 \ \rm µ s$  bis  $t = 200 \ \rm µ s$  die Phase  $ϕ(t) < 0$.


(2)  Es gilt  $f_{\rm T}\hspace{0.15cm}\underline{ = 50 \ \rm kHz}$,

  • da im dargestellten  $z(t)$–Signalausschnitt der Dauer  $200 \ \rm µ s$  genau  $10$  Perioden abgezählt werden können.


(3)  Die maximale relative Phasenabweichung beträgt  $ϕ_{\rm max} = η_1/(2π)\hspace{0.15cm}\underline{ ≈ 0.318}$.


(4)  Da die Periodendauer des Trägers  $T_0 = 20 \ \rm µ s$  ist, erhält man  $Δt_{\rm max} = ϕ_{\rm max} ·T_0\hspace{0.15cm}\underline{ ≈ 6.37 \ \rm µ s}$.


(5)  Die maximale Phasenabweichung (Verschiebung der Nulldurchgänge) ist bei  $s_2(t)$  genau so groß wie bei  $s_1(t)$. 

  • Daraus kann auf  $η_2 = η_1\hspace{0.15cm}\underline{ = 2}$  geschlossen werden.


(6)  Das Signal  $s_2(t)$  ist gegenüber  $s_1(t)$  um  $25 \ \rm µ s$  nach rechts verschoben.  Deshalb muss auch für die Quellensignale gelten:

$$ q_2(t) = q_1(t - 25\,{\rm \mu s}) = \cos \hspace{-0.1cm} \big[2 \pi f_{\rm N} (t - 25\,{\rm \mu s}) \big ] = \cos (\omega_{\rm N} \cdot t - 0.75 \cdot \pi)\hspace{0.05cm}.$$
  • Dies entspricht der Phasenlage  $ϕ_{\rm N2}\hspace{0.15cm}\underline{ = -135^\circ}$.