Difference between revisions of "Aufgaben:Exercise 3.1Z: Influence of the Message Phase in Phase Modulation"

From LNTwww
m
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
  
  
{{quiz-Header|Buchseite=Modulationsverfahren/Phasenmodulation (PM)
+
{{quiz-Header|Buchseite=Modulation_Methods/Phase_Modulation_(PM)
 
}}
 
}}
  
Line 9: Line 9:
 
The source signal is represented here in normalized form with $($amplitude  $1)$ , so that the phase-modulated signal can be characterised by the modulation index (or phase deviation)  $η$  as follows:
 
The source signal is represented here in normalized form with $($amplitude  $1)$ , so that the phase-modulated signal can be characterised by the modulation index (or phase deviation)  $η$  as follows:
 
:$$s(t) = A_{\rm T} \cdot \cos \hspace{-0.1cm}\big[\omega_{\rm T} \cdot t + \eta \cdot q(t) \big]\hspace{0.05cm}.$$
 
:$$s(t) = A_{\rm T} \cdot \cos \hspace{-0.1cm}\big[\omega_{\rm T} \cdot t + \eta \cdot q(t) \big]\hspace{0.05cm}.$$
*The signal   $s_1(t)$  shown in the upper graph is characterized by the paramet values  $ϕ_{\rm N} = -90^\circ$  und  $η_1 = 2$ .  
+
*The signal   $s_1(t)$  shown in the upper graph is characterized by the parameter values  $ϕ_{\rm N} = -90^\circ$  and  $η_1 = 2$ .  
 
*The frequency  $f_{\rm N}$  of this sinusoidal source signal as well as the carrier frequency  $f_{\rm T}$  can be determined from the signal section of duration  $200 \ \rm  µ s$  represented here.
 
*The frequency  $f_{\rm N}$  of this sinusoidal source signal as well as the carrier frequency  $f_{\rm T}$  can be determined from the signal section of duration  $200 \ \rm  µ s$  represented here.
  
Line 60: Line 60:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Man erkennt aus der Skizze, dass der dargestellte Signalausschnitt der Dauer  $200 \ \rm µ s$  genau der Periodendauer des sinusförmigen Quellensignals entsprechen muss.  Daraus folgt  $f_{\rm N}\hspace{0.15cm}\underline{ = 5 \ \rm  kHz}$.  
+
'''(1)'''  It can be seen from the sketch that the represented section of the signal of duration  $200 \ \rm µ s$  corresponds exactly to the period duration of the sinusoidal source signal. From this follows  $f_{\rm N}\hspace{0.15cm}\underline{ = 5 \ \rm  kHz}$.  
*Zu den Zeitpunkten  $t = 0$,  $t = 100 \ \rm  µ s$  und  $t = 200 \ \rm  µ s$  sind die Signale  $z(t)$  und  $s(t)$  phasensynchron.  
+
*At times  $t = 0$,  $t = 100 \ \rm  µ s$  and  $t = 200 \ \rm  µ s$ , the signals   $z(t)$  and  $s(t)$  are synchronous in phase.  
*In der ersten Halbwelle von  $q(t)$  kommen die Nulldurchgänge von  $s(t)$  etwas früher als die des Trägersignals  $z(t)$   ⇒    positive Phase.  
+
*In the first half-wave of   $q(t)$ , the zero crossings of   $s(t)$ come slightly earlier than those of the carrier signal  $z(t)$   ⇒    positive phase.  
*Dagegen ist im Bereich von&nbsp; $t = 100 \ \rm  &micro; s$&nbsp; bis&nbsp; $t = 200 \ \rm  &micro; s$&nbsp; die Phase&nbsp; $ϕ(t) < 0$.
+
*In contrast, in the range from&nbsp; $t = 100 \ \rm  &micro; s$&nbsp; to&nbsp; $t = 200 \ \rm  &micro; s$&nbsp;, the phase&nbsp; $ϕ(t) < 0$.
  
  
  
'''(2)'''&nbsp; Es gilt&nbsp; $f_{\rm T}\hspace{0.15cm}\underline{ = 50 \ \rm  kHz}$,  
+
'''(2)'''&nbsp; $f_{\rm T}\hspace{0.15cm}\underline{ = 50 \ \rm  kHz}$, holds,
*da im dargestellten&nbsp; $z(t)$&ndash;Signalausschnitt der Dauer&nbsp; $200 \ \rm  &micro; s$&nbsp; genau&nbsp; $10$&nbsp; Perioden abgezählt werden können.
+
*since exactly &nbsp; $10$&nbsp; periods can be counted in the shown section of &nbsp; $z(t)$ of duration&nbsp; $200 \ \rm  &micro; s$&nbsp;.
  
  
  
'''(3)'''&nbsp; Die maximale relative Phasenabweichung beträgt&nbsp; $ϕ_{\rm max} = η_1/(2π)\hspace{0.15cm}\underline{  ≈ 0.318}$.
+
'''(3)'''&nbsp; The maximum relative phase deviation is &nbsp; $ϕ_{\rm max} = η_1/(2π)\hspace{0.15cm}\underline{  ≈ 0.318}$.
  
  
  
'''(4)'''&nbsp; Da die Periodendauer des Trägers&nbsp; $T_0 = 20 \ \rm  &micro; s$&nbsp; ist, erhält man&nbsp; $Δt_{\rm max} = ϕ_{\rm max} ·T_0\hspace{0.15cm}\underline{ ≈ 6.37 \ \rm  &micro; s}$.
+
'''(4)'''&nbsp; Since the period of the carrier is &nbsp; $T_0 = 20 \ \rm  &micro; s$&nbsp;, we obtain&nbsp; $Δt_{\rm max} = ϕ_{\rm max} ·T_0\hspace{0.15cm}\underline{ ≈ 6.37 \ \rm  &micro; s}$.
  
  
  
'''(5)'''&nbsp; Die maximale Phasenabweichung (Verschiebung der Nulldurchgänge) ist bei&nbsp; $s_2(t)$&nbsp; genau so groß wie bei&nbsp; $s_1(t)$.&nbsp;  
+
'''(5)'''&nbsp; The maximum phase deviation (shift in the zero intercepts) is exactly the same for &nbsp; $s_2(t)$&nbsp; as for&nbsp; $s_1(t)$.&nbsp;  
*Daraus kann auf&nbsp; $η_2 = η_1\hspace{0.15cm}\underline{ = 2}$&nbsp; geschlossen werden.
+
*From this, we can conclude that&nbsp; $η_2 = η_1\hspace{0.15cm}\underline{ = 2}$&nbsp;.
  
  
  
'''(6)'''&nbsp; Das Signal&nbsp; $s_2(t)$&nbsp; ist gegenüber&nbsp; $s_1(t)$&nbsp; um&nbsp; $25  \ \rm  &micro; s$&nbsp; nach rechts verschoben.&nbsp; Deshalb muss auch für die Quellensignale gelten:
+
'''(6)'''&nbsp; The signal&nbsp; $s_2(t)$&nbsp; is shifted to the right by &nbsp; $25  \ \rm  &micro; s$&nbsp; compared to &nbsp; $s_1(t)$&nbsp;. Therefore, the same must be true for the source signals:
 
:$$ q_2(t) = q_1(t - 25\,{\rm \mu s}) = \cos \hspace{-0.1cm} \big[2 \pi f_{\rm N} (t - 25\,{\rm \mu s}) \big ] = \cos (\omega_{\rm N} \cdot t - 0.75 \cdot \pi)\hspace{0.05cm}.$$
 
:$$ q_2(t) = q_1(t - 25\,{\rm \mu s}) = \cos \hspace{-0.1cm} \big[2 \pi f_{\rm N} (t - 25\,{\rm \mu s}) \big ] = \cos (\omega_{\rm N} \cdot t - 0.75 \cdot \pi)\hspace{0.05cm}.$$
*Dies entspricht der Phasenlage &nbsp;$ϕ_{\rm N2}\hspace{0.15cm}\underline{ = -135^\circ}$.
+
*This corresponds to the phase position&nbsp;$ϕ_{\rm N2}\hspace{0.15cm}\underline{ = -135^\circ}$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 16:54, 9 April 2022


Two PM signal waveforms

We will now consider the phase modulation of diverse oscillations

$$ q(t) = \cos(\omega_{\rm N} \cdot t + \phi_{\rm N})\hspace{0.05cm}.$$

The source signal is represented here in normalized form with $($amplitude  $1)$ , so that the phase-modulated signal can be characterised by the modulation index (or phase deviation)  $η$  as follows:

$$s(t) = A_{\rm T} \cdot \cos \hspace{-0.1cm}\big[\omega_{\rm T} \cdot t + \eta \cdot q(t) \big]\hspace{0.05cm}.$$
  • The signal  $s_1(t)$  shown in the upper graph is characterized by the parameter values  $ϕ_{\rm N} = -90^\circ$  and  $η_1 = 2$ .
  • The frequency  $f_{\rm N}$  of this sinusoidal source signal as well as the carrier frequency  $f_{\rm T}$  can be determined from the signal section of duration  $200 \ \rm µ s$  represented here.
  • The signal  $s_2(t)$  possibly differs from  $s_1(t)$  due to a different message phase  $ϕ_{\rm N}$  and modulation index  $η$.  All other system parameters are unchanged from  $s_1(t)$ .





Hints:


Questions

1

Find the frequency  $f_{\rm N}$  of the message signal.

$f_{\rm N} \ = \ $

$\ \rm kHz$

2

What is the carrier frequency $f_{\rm T}$?

$f_{\rm T} \ = \ $

$\ \rm kHz$

3

What is the maximum phase deviation  $ϕ_{\rm max}$  between  $z(t)$  and  $s(t)$?

$ϕ_{\rm max} \ = \ $

$\ \rm rad$

4

What is the maximum time shift of the zero crossings that this phase results in?

$Δt_{\rm max} \ = \ $

$\ \rm µ s$

5

Determine the modulation index  $η_2$  for the signal  $s_2(t)$.

$η_2 \ = \ $

6

What is the phase  $ϕ_{\rm N2}$  of the underlying source signal  $q(t)$ for  $s_2(t)$ ?

$ϕ_{\rm N2} \ = \ $

$\ \rm Grad$


Solution

(1)  It can be seen from the sketch that the represented section of the signal of duration  $200 \ \rm µ s$  corresponds exactly to the period duration of the sinusoidal source signal. From this follows  $f_{\rm N}\hspace{0.15cm}\underline{ = 5 \ \rm kHz}$.

  • At times  $t = 0$,  $t = 100 \ \rm µ s$  and  $t = 200 \ \rm µ s$ , the signals   $z(t)$  and  $s(t)$  are synchronous in phase.
  • In the first half-wave of   $q(t)$ , the zero crossings of   $s(t)$ come slightly earlier than those of the carrier signal  $z(t)$   ⇒   positive phase.
  • In contrast, in the range from  $t = 100 \ \rm µ s$  to  $t = 200 \ \rm µ s$ , the phase  $ϕ(t) < 0$.


(2)  $f_{\rm T}\hspace{0.15cm}\underline{ = 50 \ \rm kHz}$, holds,

  • since exactly   $10$  periods can be counted in the shown section of   $z(t)$ of duration  $200 \ \rm µ s$ .


(3)  The maximum relative phase deviation is   $ϕ_{\rm max} = η_1/(2π)\hspace{0.15cm}\underline{ ≈ 0.318}$.


(4)  Since the period of the carrier is   $T_0 = 20 \ \rm µ s$ , we obtain  $Δt_{\rm max} = ϕ_{\rm max} ·T_0\hspace{0.15cm}\underline{ ≈ 6.37 \ \rm µ s}$.


(5)  The maximum phase deviation (shift in the zero intercepts) is exactly the same for   $s_2(t)$  as for  $s_1(t)$. 

  • From this, we can conclude that  $η_2 = η_1\hspace{0.15cm}\underline{ = 2}$ .


(6)  The signal  $s_2(t)$  is shifted to the right by   $25 \ \rm µ s$  compared to   $s_1(t)$ . Therefore, the same must be true for the source signals:

$$ q_2(t) = q_1(t - 25\,{\rm \mu s}) = \cos \hspace{-0.1cm} \big[2 \pi f_{\rm N} (t - 25\,{\rm \mu s}) \big ] = \cos (\omega_{\rm N} \cdot t - 0.75 \cdot \pi)\hspace{0.05cm}.$$
  • This corresponds to the phase position $ϕ_{\rm N2}\hspace{0.15cm}\underline{ = -135^\circ}$.